Assessing the cognitive status of Drosophila by the value-based feeding decision

IF 5.4 Q1 GERIATRICS & GERONTOLOGY NPJ Aging and Mechanisms of Disease Pub Date : 2020-08-27 DOI:10.1101/2020.08.27.267955
C. Yu, Ferng-Chang Chang, Yong-Huei Hong, Jian-Chiuan Li, Po-Lin Chen, Chun-Hong Chen, Tzai-Wen Chiu, Tsai‐Te Lu, Yun-Ming Wang, Chih-Fei Kao
{"title":"Assessing the cognitive status of Drosophila by the value-based feeding decision","authors":"C. Yu, Ferng-Chang Chang, Yong-Huei Hong, Jian-Chiuan Li, Po-Lin Chen, Chun-Hong Chen, Tzai-Wen Chiu, Tsai‐Te Lu, Yun-Ming Wang, Chih-Fei Kao","doi":"10.1101/2020.08.27.267955","DOIUrl":null,"url":null,"abstract":"Decision-making is considered an important aspect of cognitive function. Impaired decision-making is a consequence of cognitive decline caused by various physiological conditions, such as aging and neurodegenerative diseases. Here we exploited the value-based feeding decision (VBFD) assay, which is a simple sensory–motor task, to determine the cognitive status of Drosophila . Our results indicated the deterioration of VBFD is notably correlated with aging and neurodegenerative disorders. Restriction of the mushroom body (MB) neuronal activity partly blunted the proper VBFD. Furthermore, using the Drosophila polyQ disease model, we demonstrated the impaired VBFD is ameliorated by the dinitrosyl iron complex (DNIC-1), a novel and steady nitric oxide (NO)-releasing compound. Therefore we propose that the VBFD assay provides a robust assessment of Drosophila cognition and can be used to characterize additional neuroprotective interventions.","PeriodicalId":19334,"journal":{"name":"NPJ Aging and Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Aging and Mechanisms of Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.08.27.267955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Decision-making is considered an important aspect of cognitive function. Impaired decision-making is a consequence of cognitive decline caused by various physiological conditions, such as aging and neurodegenerative diseases. Here we exploited the value-based feeding decision (VBFD) assay, which is a simple sensory–motor task, to determine the cognitive status of Drosophila . Our results indicated the deterioration of VBFD is notably correlated with aging and neurodegenerative disorders. Restriction of the mushroom body (MB) neuronal activity partly blunted the proper VBFD. Furthermore, using the Drosophila polyQ disease model, we demonstrated the impaired VBFD is ameliorated by the dinitrosyl iron complex (DNIC-1), a novel and steady nitric oxide (NO)-releasing compound. Therefore we propose that the VBFD assay provides a robust assessment of Drosophila cognition and can be used to characterize additional neuroprotective interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于价值的摄食决策评估果蝇的认知状态
决策被认为是认知功能的一个重要方面。决策能力受损是由各种生理条件(如衰老和神经退行性疾病)引起的认知能力下降的结果。在这里,我们利用基于价值的喂养决策(VBFD)测定,这是一个简单的感觉-运动任务,以确定果蝇的认知状态。我们的研究结果表明,VBFD的恶化与衰老和神经退行性疾病显著相关。蘑菇体(MB)神经元活动的限制在一定程度上削弱了适当的VBFD。此外,利用果蝇多q疾病模型,我们证明了受损的VBFD可以通过二硝基铁络合物(DNIC-1)来改善,二硝基铁络合物是一种新型且稳定的一氧化氮(NO)释放化合物。因此,我们建议VBFD检测提供了果蝇认知的可靠评估,并可用于表征额外的神经保护干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Aging and Mechanisms of Disease
NPJ Aging and Mechanisms of Disease Medicine-Geriatrics and Gerontology
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊介绍: npj Aging and Mechanisms of Disease is an online open access journal that provides a forum for the world’s most important research in the fields of aging and aging-related disease. The journal publishes papers from all relevant disciplines, encouraging those that shed light on the mechanisms behind aging and the associated diseases. The journal’s scope includes, but is not restricted to, the following areas (not listed in order of preference): • cellular and molecular mechanisms of aging and aging-related diseases • interventions to affect the process of aging and longevity • homeostatic regulation and aging • age-associated complications • translational research into prevention and treatment of aging-related diseases • mechanistic bases for epidemiological aspects of aging-related disease.
期刊最新文献
EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate Healthcare on the brink: navigating the challenges of an aging society in the United States Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease The use of a systems approach to increase NAD+ in human participants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1