Extraction of Flavonoids from Merremia mammosa Using Ethanol Solvent in a Fixed-Bed Column

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2022-06-30 DOI:10.22146/ajche.70012
P. Mulyono, Alfita Sofia Yuzki, M. Sarı, N. R. E. Putri
{"title":"Extraction of Flavonoids from Merremia mammosa Using Ethanol Solvent in a Fixed-Bed Column","authors":"P. Mulyono, Alfita Sofia Yuzki, M. Sarı, N. R. E. Putri","doi":"10.22146/ajche.70012","DOIUrl":null,"url":null,"abstract":"This research aims to investigate the best operating condition for the extraction process of flavonoids from Merremia mammosa root by determining the mass transfer coefficient (Ke). The root was prepared by drying, crushing, and sieving into a homogeneous size and then extracted in a fixed-bed column using 70 wt% of ethanol as a solvent for 2 hours. The obtained samples were then analyzed every 30 min using high-performance liquid chromatography. The parameters investigated in this research were particle size of 1.275, 1.85, and 4.01 mm and solvent flow rate of 3, 6, and 9 mL/s. Based on the experimental data, the value of Ke was calculated using the Hooke-Jeeves numerical method of optimization. The results showed that the decrease in particle size and the increase in solvent flow rate could increase the Ke values, leading to the high concentration of flavonoids extracted using the solvent. The Ke values obtained in this research ranged from 0.3145 m/s to 0.7880 m/s. The empirical equation that shows the correlation between Ke and the parameters can be expressed as Sh = 1.10 × 1014 Re0.0564 (1 − ε)0.8718 with a relative error of 6.13% compared with the experimental data (Sh is the Sherwood number, Re is the Reynolds number, and ε is the porosity of the fixed-bed column).","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to investigate the best operating condition for the extraction process of flavonoids from Merremia mammosa root by determining the mass transfer coefficient (Ke). The root was prepared by drying, crushing, and sieving into a homogeneous size and then extracted in a fixed-bed column using 70 wt% of ethanol as a solvent for 2 hours. The obtained samples were then analyzed every 30 min using high-performance liquid chromatography. The parameters investigated in this research were particle size of 1.275, 1.85, and 4.01 mm and solvent flow rate of 3, 6, and 9 mL/s. Based on the experimental data, the value of Ke was calculated using the Hooke-Jeeves numerical method of optimization. The results showed that the decrease in particle size and the increase in solvent flow rate could increase the Ke values, leading to the high concentration of flavonoids extracted using the solvent. The Ke values obtained in this research ranged from 0.3145 m/s to 0.7880 m/s. The empirical equation that shows the correlation between Ke and the parameters can be expressed as Sh = 1.10 × 1014 Re0.0564 (1 − ε)0.8718 with a relative error of 6.13% compared with the experimental data (Sh is the Sherwood number, Re is the Reynolds number, and ε is the porosity of the fixed-bed column).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定床柱乙醇萃取毛蕊花黄酮类化合物的研究
本研究旨在通过测定传质系数(Ke),探索毛蕊草根总黄酮提取工艺的最佳操作条件。根经干燥,粉碎,筛成均匀的大小,然后在固定床柱中提取,使用70%的乙醇作为溶剂2小时。然后每隔30分钟用高效液相色谱分析得到的样品。实验参数为:粒径为1.275、1.85、4.01 mm,溶剂流速为3、6、9 mL/s。在实验数据的基础上,采用Hooke-Jeeves数值优化方法计算了Ke的值。结果表明,减小溶剂粒径和增大溶剂流速可以提高提取液的Ke值,从而获得较高的提取浓度。本研究得到的Ke值为0.3145 m/s ~ 0.7880 m/s。Ke与各参数相关性的经验方程为Sh = 1.10 × 1014 Re0.0564(1−ε)0.8718,与实验数据(Sh为Sherwood数,Re为雷诺数,ε为固定床柱孔隙率)相比,相对误差为6.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1