Hannah Arnold, G. Dobson, Alexandre Foito, C. Austin, J. Sungurtas, J. W. Allwood, D. Stewart, G. McDougall
{"title":"Assessing available phytochemicals from commercial blackcurrant and raspberry pomaces","authors":"Hannah Arnold, G. Dobson, Alexandre Foito, C. Austin, J. Sungurtas, J. W. Allwood, D. Stewart, G. McDougall","doi":"10.3233/jbr-220017","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Berry pomaces obtained after commercial juice production contain phytochemicals which may find use as antioxidants, food additives and biomedical products. Oil extraction from seeds provides additional value but the availability of phytochemicals before and after oil extraction is not well established. OBJECTIVE: This pilot study defines the content and composition of phytochemicals from raspberry and black currant pomaces after extraction with water-ethanol mixes, but also before and after milling/ oil extraction. METHODS: The total phenol (TPC), total anthocyanin (TAC) and antioxidant content of extracts was assessed. Their phytochemical composition was studied using liquid chromatography-mass spectrometry (LC-MSn). RESULTS: TPC and TAC increased with increasing % ethanol. Anthocyanins were major components in blackcurrant pomace and were more readily extracted than total phenols. Total oil content and composition was not influenced by solvent pre-extraction. Milling/ oil extraction markedly increased TPC from raspberry but not from blackcurrant pomace. LC-MSn confirmed characteristic phytochemical compositions and that increasing % ethanol increased yield of certain components. Milling increased specific ellagitannins, proanthocyanins and triterpenoids from raspberry. CONCLUSIONS: Milling/ oil extraction increased the yield and phytochemical diversity of extracts from raspberry but not from blackcurrant pomace which suggests that the phytochemicals from blackcurrant pomace are largely available on the pomace surfaces.","PeriodicalId":15194,"journal":{"name":"Journal of Berry Research","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Berry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3233/jbr-220017","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND: Berry pomaces obtained after commercial juice production contain phytochemicals which may find use as antioxidants, food additives and biomedical products. Oil extraction from seeds provides additional value but the availability of phytochemicals before and after oil extraction is not well established. OBJECTIVE: This pilot study defines the content and composition of phytochemicals from raspberry and black currant pomaces after extraction with water-ethanol mixes, but also before and after milling/ oil extraction. METHODS: The total phenol (TPC), total anthocyanin (TAC) and antioxidant content of extracts was assessed. Their phytochemical composition was studied using liquid chromatography-mass spectrometry (LC-MSn). RESULTS: TPC and TAC increased with increasing % ethanol. Anthocyanins were major components in blackcurrant pomace and were more readily extracted than total phenols. Total oil content and composition was not influenced by solvent pre-extraction. Milling/ oil extraction markedly increased TPC from raspberry but not from blackcurrant pomace. LC-MSn confirmed characteristic phytochemical compositions and that increasing % ethanol increased yield of certain components. Milling increased specific ellagitannins, proanthocyanins and triterpenoids from raspberry. CONCLUSIONS: Milling/ oil extraction increased the yield and phytochemical diversity of extracts from raspberry but not from blackcurrant pomace which suggests that the phytochemicals from blackcurrant pomace are largely available on the pomace surfaces.
期刊介绍:
The main objective of the Journal of Berry Research is to improve the knowledge about quality and production of berries to benefit health of the consumers and maintain profitable production using sustainable systems. The objective will be achieved by focusing on four main areas of research and development:
From genetics to variety evaluation
Nursery production systems and plant quality control
Plant physiology, biochemistry and molecular biology, as well as cultural management
Health for the consumer: components and factors affecting berries'' nutritional value
Specifically, the journal will cover berries (strawberry, raspberry, blackberry, blueberry, cranberry currants, etc.), as well as grapes and small soft fruit in general (e.g., kiwi fruit). It will publish research results covering all areas of plant breeding, including plant genetics, genomics, functional genomics, proteomics and metabolomics, plant physiology, plant pathology and plant development, as well as results dealing with the chemistry and biochemistry of bioactive compounds contained in such fruits and their possible role in human health. Contributions detailing possible pharmacological, medical or therapeutic use or dietary significance will be welcomed in addition to studies regarding biosafety issues of genetically modified plants.