Overcoming the regeneration barriers of tropical dry forest: effects of water stress and herbivory on seedling performance and allocation of key tree species for restoration
C. Cárdenas, Daniela Varón-García, Freddy Suárez-Rodríguez, C. Pizano
{"title":"Overcoming the regeneration barriers of tropical dry forest: effects of water stress and herbivory on seedling performance and allocation of key tree species for restoration","authors":"C. Cárdenas, Daniela Varón-García, Freddy Suárez-Rodríguez, C. Pizano","doi":"10.1017/s0266467422000074","DOIUrl":null,"url":null,"abstract":"\n Tropical dry forests (TDF) are one of the most threatened and poorly protected ecosystems in the Americas. Although there are international efforts for the restoration of TDF, how stress factors such as herbivory or water limitation due to changes in precipitation, impact the regeneration dynamics of these forests is poorly understood. Specifically, how seedlings of key tree species for TDF restoration cope with current abiotic pressures such as the intensification of climatic events, and biotic factors like herbivory, is not yet fully understood. Here, we compared seedling performance, and allocation of biomass, and water to roots vs. shoots for three legume, and one non-legume TDF tree species, as a response to water limitation and herbivory in an 8-month greenhouse experiment. Contrary to our expectations, we found that the non-legume species, G. ulmifolia, had the best performance compared to legumes, while N-fixing and non-fixing legumes showed similar performance. Based on our findings, we suggest the use of G. ulmifolia in TDF restoration projects due to its high performance despite abiotic and biotic stress factors, its allocation of biomass and water to belowground structures. We also recommend the use of N-fixing legume species owing to their ability to fix nitrogen, which guarantees an N input to the soil, important in the first stages of succession. However, the legume species used in this experiment do not appear to resist the abiotic and biotic stressors studied. Thus, more studies exploring the response of dry forest plant species to stress factors are key for informing and assuring more effective TDF restoration efforts.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0266467422000074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Tropical dry forests (TDF) are one of the most threatened and poorly protected ecosystems in the Americas. Although there are international efforts for the restoration of TDF, how stress factors such as herbivory or water limitation due to changes in precipitation, impact the regeneration dynamics of these forests is poorly understood. Specifically, how seedlings of key tree species for TDF restoration cope with current abiotic pressures such as the intensification of climatic events, and biotic factors like herbivory, is not yet fully understood. Here, we compared seedling performance, and allocation of biomass, and water to roots vs. shoots for three legume, and one non-legume TDF tree species, as a response to water limitation and herbivory in an 8-month greenhouse experiment. Contrary to our expectations, we found that the non-legume species, G. ulmifolia, had the best performance compared to legumes, while N-fixing and non-fixing legumes showed similar performance. Based on our findings, we suggest the use of G. ulmifolia in TDF restoration projects due to its high performance despite abiotic and biotic stress factors, its allocation of biomass and water to belowground structures. We also recommend the use of N-fixing legume species owing to their ability to fix nitrogen, which guarantees an N input to the soil, important in the first stages of succession. However, the legume species used in this experiment do not appear to resist the abiotic and biotic stressors studied. Thus, more studies exploring the response of dry forest plant species to stress factors are key for informing and assuring more effective TDF restoration efforts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.