Simple criterion for evaluating stability of hydraulic oscillation based on water-hammer reflection coefficients

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL Journal of Hydraulic Research Pub Date : 2023-07-04 DOI:10.1080/00221686.2023.2227442
Jian Zhang, Long Chen, Yongguang Cheng, Hui-yong Xu, Xu-yun Chen, Dongliang Hu
{"title":"Simple criterion for evaluating stability of hydraulic oscillation based on water-hammer reflection coefficients","authors":"Jian Zhang, Long Chen, Yongguang Cheng, Hui-yong Xu, Xu-yun Chen, Dongliang Hu","doi":"10.1080/00221686.2023.2227442","DOIUrl":null,"url":null,"abstract":"Hydraulic oscillation is a fluctuating phenomenon of pressure and discharge in pipes, which can threaten the safety of hydropower, pumping and water conveyance systems. To analyse the associated problems, new methods with simple form and clear physics are needed. This paper presents a water-hammer reflection coefficient-based criterion for stability evaluation of free-vibration of hydraulic systems. The stability (or attenuation) condition for a single pipe system is that the modulus of the product of the reflection coefficients at the inlet and outlet should be smaller than 1. For a complex pipe system, the condition necessary for stability is that every single pipe system is stable. To apply this new criterion to stabilizing the reservoir-single pipe-constant power turbine system by adding a head loss valve in the pipe, a formula for the critical head loss is proposed and verified. This new method is theoretically consistent with conventional methods, but more convenient in application.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2227442","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydraulic oscillation is a fluctuating phenomenon of pressure and discharge in pipes, which can threaten the safety of hydropower, pumping and water conveyance systems. To analyse the associated problems, new methods with simple form and clear physics are needed. This paper presents a water-hammer reflection coefficient-based criterion for stability evaluation of free-vibration of hydraulic systems. The stability (or attenuation) condition for a single pipe system is that the modulus of the product of the reflection coefficients at the inlet and outlet should be smaller than 1. For a complex pipe system, the condition necessary for stability is that every single pipe system is stable. To apply this new criterion to stabilizing the reservoir-single pipe-constant power turbine system by adding a head loss valve in the pipe, a formula for the critical head loss is proposed and verified. This new method is theoretically consistent with conventional methods, but more convenient in application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于水锤反射系数的水力振荡稳定性简易判据
水力振荡是管道中压力和流量的波动现象,它会威胁水电、抽水和输水系统的安全。为了分析相关问题,需要形式简单、物理清晰的新方法。本文提出了一种基于水锤反射系数的液压系统自由振动稳定性评价准则。单管系统的稳定性(或衰减)条件是入口和出口处反射系数的乘积模量应小于1。对于复杂的管道系统,稳定的必要条件是每个管道系统都是稳定的。为了将这一新准则应用于通过在管道中增加水头损失阀来稳定水库单管恒定功率涡轮机系统,提出并验证了临界水头损失的公式。这种新方法在理论上与传统方法一致,但在应用上更方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
期刊最新文献
Air–water flows Lattice Boltzmann simulation of plunging breakers Simulation of a Pelton turbine using the moving particle simulation method: application to two challenging situations Flexural-gravity wave forces acting on a submerged spherical object over a flexible sea bed A finite volume model for maintaining stationarity and reducing spurious oscillations in simulations of sewer system filling and emptying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1