Upper large deviations for power-weighted edge lengths in spatial random networks

Pub Date : 2022-03-04 DOI:10.1017/apr.2023.10
C. Hirsch, Daniel Willhalm
{"title":"Upper large deviations for power-weighted edge lengths in spatial random networks","authors":"C. Hirsch, Daniel Willhalm","doi":"10.1017/apr.2023.10","DOIUrl":null,"url":null,"abstract":"\n We study the large-volume asymptotics of the sum of power-weighted edge lengths \n \n \n \n$\\sum_{e \\in E}|e|^\\alpha$\n\n \n in Poisson-based spatial random networks. In the regime \n \n \n \n$\\alpha > d$\n\n \n , we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable \n \n \n \n$\\beta$\n\n \n -skeletons.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E}|e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha > d$ , we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable $\beta$ -skeletons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
空间随机网络中功率加权边长的上大偏差
研究了基于泊松的空间随机网络中幂加权边长度和$\sum_{e \in E}|e|^\alpha$的大体积渐近性。在$\alpha > d$状态下,我们提供了一组充分条件,在这些条件下,上大偏差渐近特征为凝结现象,这意味着过量是由泊松点的可忽略部分引起的。此外,速率函数可以通过一个具体的优化问题来表示。该框架特别包含k-最近邻图的有向、双向和无向变体,以及合适的$\beta$ -骨架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1