{"title":"$1$-movable $2$-Resolving Hop Domination in Graph","authors":"Angelica Mae Mahistrado, Helen M. Rara","doi":"10.29020/nybg.ejpam.v16i3.4770","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \\in S$, either $S\\backslash \\{v\\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \\in \\big((V (G) \\backslash S) \\cap N_G(v)\\big)$ such that $\\big(S \\backslash \\{v\\}\\big) \\cup \\{u\\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \in S$, either $S\backslash \{v\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \in \big((V (G) \backslash S) \cap N_G(v)\big)$ such that $\big(S \backslash \{v\}\big) \cup \{u\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.