Feature-Engineering für die Zustandsüberwachung von Wälzlagern mittels maschinellen Lernens

Q4 Materials Science Tribologie und Schmierungstechnik Pub Date : 2021-12-15 DOI:10.24053/tus-2021-0032
C. Bienefeld, A. Vogt, Marian Kacmar, E. Kirchner
{"title":"Feature-Engineering für die Zustandsüberwachung von Wälzlagern mittels maschinellen Lernens","authors":"C. Bienefeld, A. Vogt, Marian Kacmar, E. Kirchner","doi":"10.24053/tus-2021-0032","DOIUrl":null,"url":null,"abstract":"In rotating machinery, rolling bearings are often the components limiting service life. To avoid unforeseen downtimes, they have to be maintained. For reasons of safety and cost optimization, condition-based maintenance is increasingly being used. Knowing the condition of the components that are critical to wear is essential for this maintenance approach. The insight about the condition is achieved by means of suitable measurement variables, which can be used to automatically detect the condition of the components using machine learning. The quality of the condition monitoring is strongly dependent on the available measurement data and its preprocessing. For condition monitoring of rolling bearings, structure-borne sound signals can be used. The decisive factor here is to determine so-called features from the high-frequency sampled structure-borne sound signals. These features are supposed to reflect the characteristic properties of the measured signals. At the same time, the amount of data is considerably reduced. In this article, different methods of feature engineering based on structure-borne sound are investigated. For this purpose, the wear of rolling bearings is considered in the context of endurance tests. A new feature generation method is presented and compared to common methods from literature.","PeriodicalId":53690,"journal":{"name":"Tribologie und Schmierungstechnik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribologie und Schmierungstechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24053/tus-2021-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

In rotating machinery, rolling bearings are often the components limiting service life. To avoid unforeseen downtimes, they have to be maintained. For reasons of safety and cost optimization, condition-based maintenance is increasingly being used. Knowing the condition of the components that are critical to wear is essential for this maintenance approach. The insight about the condition is achieved by means of suitable measurement variables, which can be used to automatically detect the condition of the components using machine learning. The quality of the condition monitoring is strongly dependent on the available measurement data and its preprocessing. For condition monitoring of rolling bearings, structure-borne sound signals can be used. The decisive factor here is to determine so-called features from the high-frequency sampled structure-borne sound signals. These features are supposed to reflect the characteristic properties of the measured signals. At the same time, the amount of data is considerably reduced. In this article, different methods of feature engineering based on structure-borne sound are investigated. For this purpose, the wear of rolling bearings is considered in the context of endurance tests. A new feature generation method is presented and compared to common methods from literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的滚动轴承状态监测特征工程
在旋转机械中,滚动轴承往往是限制使用寿命的部件。为了避免不可预见的停机时间,必须对其进行维护。出于安全和成本优化的原因,越来越多地使用基于状态的维护。了解对磨损至关重要的部件的状况对于这种维护方法至关重要。通过适当的测量变量来了解条件,这些变量可用于使用机器学习自动检测部件的条件。状态监测的质量在很大程度上取决于可用的测量数据及其预处理。对于滚动轴承的状态监测,可以使用结构声音信号。这里的决定性因素是从高频采样的结构声信号中确定所谓的特征。这些特征被认为反映了测量信号的特性。与此同时,数据量大大减少。本文研究了基于结构声的特征工程的不同方法。为此,在耐久性试验中考虑了滚动轴承的磨损。提出了一种新的特征生成方法,并与文献中的常用方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribologie und Schmierungstechnik
Tribologie und Schmierungstechnik Materials Science-Surfaces, Coatings and Films
CiteScore
0.50
自引率
0.00%
发文量
22
期刊最新文献
Experimental and Simulative Investigation of a Partially Hydrostatic Relieved Contact in Variable Speed Axial Piston Machines Measurement device and automation solution for analysing tribologically damaged radial shaft seals Fatigue life prediction of rolling bearings based on damage accumulation considering residual stresses Numerical Study on Anisotropic EHL Contacts with Short Fiber Reinforced Polymers Die Analyse von Abrieb- und Additiv elementen in Schmierfetten: XRF, RDE-OES oder ICP-OES?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1