Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios

F. Lehner, I. Nadeem, H. Formayer
{"title":"Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios","authors":"F. Lehner, I. Nadeem, H. Formayer","doi":"10.5194/ascmo-9-29-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Daily meteorological data such as temperature or precipitation from climate models are needed for many climate impact studies, e.g., in hydrology or agriculture, but direct model output can contain large systematic errors. A large variety of methods exist to adjust the bias of climate model outputs. Here we review existing statistical bias-adjustment methods and their shortcomings, and compare quantile mapping (QM), scaled distribution mapping (SDM), quantile delta mapping (QDM) and an empiric version of PresRAT (PresRATe). We then test these methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance in terms of the following demands: (1) the model data should match the climatological means of the observational data in the historical period; (2) the long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment; and (3) even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. QDM and PresRATe combined fulfill all three demands. For (2) for precipitation, PresRATe already includes an additional correction that assures that the climate change signal is conserved.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-9-29-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Daily meteorological data such as temperature or precipitation from climate models are needed for many climate impact studies, e.g., in hydrology or agriculture, but direct model output can contain large systematic errors. A large variety of methods exist to adjust the bias of climate model outputs. Here we review existing statistical bias-adjustment methods and their shortcomings, and compare quantile mapping (QM), scaled distribution mapping (SDM), quantile delta mapping (QDM) and an empiric version of PresRAT (PresRATe). We then test these methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance in terms of the following demands: (1) the model data should match the climatological means of the observational data in the historical period; (2) the long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment; and (3) even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. QDM and PresRATe combined fulfill all three demands. For (2) for precipitation, PresRATe already includes an additional correction that assures that the climate change signal is conserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估气候变化情景下基于分位数的偏差调整的技能和问题
摘要许多气候影响研究,例如在水文学或农业领域,都需要气候模式提供的温度或降水等日常气象数据,但是直接模式输出可能包含较大的系统误差。存在多种方法来调整气候模式输出的偏差。在此,我们回顾了现有的统计偏倚调整方法及其不足,并比较了分位数映射(QM)、比例分布映射(SDM)、分位数增量映射(QDM)和PresRAT (PresRATe)的经验版本。然后,我们使用奥地利真实的和人工创建的每日温度和降水数据来测试这些方法。我们从以下几个方面对性能进行了比较:(1)模式数据应与历史时期观测资料的气候平均值相匹配;(2)均值(气候变化信号)的长期气候趋势,无论定义为差还是比,在偏置调整期间都不应改变;(3)即使湿日数过少(降水大于0.1 mm)的模式也要进行精确校正,使湿日数频率保持不变。QDM和PresRATe的结合满足了这三个需求。对于(2)降水,PresRATe已经包含了一个额外的校正,以确保气候变化信号是守恒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
期刊最新文献
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency Comparison of climate time series – Part 5: Multivariate annual cycles Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1