Inhibition of monoamine oxidases by benzimidazole chalcone derivatives

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Applied Biological Chemistry Pub Date : 2023-06-17 DOI:10.1186/s13765-023-00795-1
Athulya Krishna, Jiseong Lee, Sunil Kumar, Sachithra Thazhathuveedu Sudevan, Prerna Uniyal, Leena K. Pappachen, Hoon Kim, Bijo Mathew
{"title":"Inhibition of monoamine oxidases by benzimidazole chalcone derivatives","authors":"Athulya Krishna,&nbsp;Jiseong Lee,&nbsp;Sunil Kumar,&nbsp;Sachithra Thazhathuveedu Sudevan,&nbsp;Prerna Uniyal,&nbsp;Leena K. Pappachen,&nbsp;Hoon Kim,&nbsp;Bijo Mathew","doi":"10.1186/s13765-023-00795-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ten benzimidazole chalcone derivatives were synthesized, and their monoamine oxidase (MAO) inhibitory activity was evaluated. Most compounds showed higher inhibitory activity against MAO-B than MAO-A. Compound BCH2 exhibited an IC<sub>50</sub> value of 0.80 μM, thereby showing the most potent inhibition amongst all. In addition, BCH2 showed the highest MAO-B selectivity index (SI) with an SI value of 44.11 compared to MAO-A. Among the substituents, the halogen group showed the best MAO-B inhibition, and the <i>ortho</i>-position of the B ring showed better inhibitory activity than the <i>para</i>-site. In comparison with <i>ortho</i>-substituents, the inhibitory activity increased in the order, -Cl &gt; -Br &gt; -F &gt; -H. BCH2 was found to be a competitive inhibitor of the enzyme with optimum inhibition kinetics, where K<sub>i</sub> was found to be 0.25 ± 0.014 μM. In the reversibility experiment, BCH2 showed a recovery pattern after MAO-B inhibition, similar to that of lazabemide. Thus, BCH2 is a potent, reversible, and selective MAO-B inhibitor and has been suggested as a candidate for the treatment of neurological disorders.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-023-00795-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-023-00795-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Ten benzimidazole chalcone derivatives were synthesized, and their monoamine oxidase (MAO) inhibitory activity was evaluated. Most compounds showed higher inhibitory activity against MAO-B than MAO-A. Compound BCH2 exhibited an IC50 value of 0.80 μM, thereby showing the most potent inhibition amongst all. In addition, BCH2 showed the highest MAO-B selectivity index (SI) with an SI value of 44.11 compared to MAO-A. Among the substituents, the halogen group showed the best MAO-B inhibition, and the ortho-position of the B ring showed better inhibitory activity than the para-site. In comparison with ortho-substituents, the inhibitory activity increased in the order, -Cl > -Br > -F > -H. BCH2 was found to be a competitive inhibitor of the enzyme with optimum inhibition kinetics, where Ki was found to be 0.25 ± 0.014 μM. In the reversibility experiment, BCH2 showed a recovery pattern after MAO-B inhibition, similar to that of lazabemide. Thus, BCH2 is a potent, reversible, and selective MAO-B inhibitor and has been suggested as a candidate for the treatment of neurological disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苯并咪唑查尔酮衍生物对单胺氧化酶的抑制作用
化合物BCH2的IC50值为0.80 μM,具有最强的抑制作用。与邻取代基相比,抑制活性依次为-Cl > -Br > -F > -H。BCH2是一种具有最佳抑制动力学的竞争性抑制剂,Ki为0.25±0.014 μM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
期刊最新文献
Effects of oral hyaluronic acid on monosodium iodoacetate-induced osteoarthritis in rats: mechanistic insights and therapeutic implications Targeted dsRNA-mediated suppression of Phytophthora infestans infection via Avr3a Anti-aging potential of Cephalotaxus harringtonia extracts: the role of harringtonine and homoharringtonine in skin protection Publisher Correction to: Development of Bacillus stratosphericus Lysate Concentrate to Control Sebum Secretion through In vitro Studies and Clinical Trial In vitro effectiveness of CB469, a MET tyrosine kinase inhibitor in MET-activated cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1