Surface morphology on carbon fiber composites by rotary ultrasonic milling

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-09-03 DOI:10.1080/10910344.2021.1971705
Jing Shu, W. Liao, K. Zheng, Amro M. Fikry Hussein Youssef
{"title":"Surface morphology on carbon fiber composites by rotary ultrasonic milling","authors":"Jing Shu, W. Liao, K. Zheng, Amro M. Fikry Hussein Youssef","doi":"10.1080/10910344.2021.1971705","DOIUrl":null,"url":null,"abstract":"Abstract Carbon-carbon composites (C/C composites) is typical high temperature resistant material. Therefore it is applied in solid rocket motor (SRM) throat mostly. Because the throat is mostly single piece and mini-batch, which is not suitable for mold forming. Usually, numerical control machining is still the main method. Due to high strength and heterogeneous composites, the machining damage defects are obvious and quality is poor. Thus, from the perspective of C/C composites ablation resistance, rotary ultrasonic machining technology effect on C/C composites surface defects and damage is investigated. Moreover, the influence of ultrasonic vibration on fiber cutting angle and machined surface morphology is analyzed. Meanwhile, based on comparative experiment, fiber pull-out length and surface porosity are presented as characterization parameters. The results show that ultrasonic vibration not only improves fiber cutting angle effectively, but also reduces pores and cracks on machined surfaces. Moreover, it reduces fiber pull-out length by 10%–50% numerically when along fiber milling. When fiber is perpendicular to the cutting direction, the pull-out length becomes shorter. The above study provides a theoretical basis for subsequent machined damage influence on ablation resistance of C/C throat.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1971705","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Carbon-carbon composites (C/C composites) is typical high temperature resistant material. Therefore it is applied in solid rocket motor (SRM) throat mostly. Because the throat is mostly single piece and mini-batch, which is not suitable for mold forming. Usually, numerical control machining is still the main method. Due to high strength and heterogeneous composites, the machining damage defects are obvious and quality is poor. Thus, from the perspective of C/C composites ablation resistance, rotary ultrasonic machining technology effect on C/C composites surface defects and damage is investigated. Moreover, the influence of ultrasonic vibration on fiber cutting angle and machined surface morphology is analyzed. Meanwhile, based on comparative experiment, fiber pull-out length and surface porosity are presented as characterization parameters. The results show that ultrasonic vibration not only improves fiber cutting angle effectively, but also reduces pores and cracks on machined surfaces. Moreover, it reduces fiber pull-out length by 10%–50% numerically when along fiber milling. When fiber is perpendicular to the cutting direction, the pull-out length becomes shorter. The above study provides a theoretical basis for subsequent machined damage influence on ablation resistance of C/C throat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转超声铣削碳纤维复合材料的表面形貌
碳-碳复合材料(C/C复合材料)是典型的耐高温材料。因此,它主要应用于固体火箭发动机(SRM)喉部。因为喉部多为单件和小批量,不适合模具成型。通常,数控加工仍然是主要的加工方法。由于复合材料强度高、不均匀,加工损伤缺陷明显,质量差。因此,从C/C复合材料抗烧蚀的角度出发,研究了旋转超声加工工艺对C/C复合材料表面缺陷和损伤的影响。分析了超声振动对纤维切削角度和加工表面形貌的影响。同时,在对比实验的基础上,提出了纤维拔出长度和表面孔隙率作为表征参数。结果表明,超声振动不仅能有效提高纤维的切削角度,而且能减小加工表面的孔隙和裂纹。此外,沿纤维铣削可使纤维拔出长度减少10% ~ 50%。当纤维垂直于切割方向时,拉出长度变短。上述研究为后续加工损伤对C/C喉道抗烧蚀性能的影响提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1