A new conjugate gradient method for acceleration of gradient descent algorithms

Noureddine Rahali, M. Belloufi, R. Benzine
{"title":"A new conjugate gradient method for acceleration of gradient descent algorithms","authors":"Noureddine Rahali, M. Belloufi, R. Benzine","doi":"10.2478/mjpaa-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract An accelerated of the steepest descent method for solving unconstrained optimization problems is presented. which propose a fundamentally different conjugate gradient method, in which the well-known parameter βk is computed by an new formula. Under common assumptions, by using a modified Wolfe line search, descent property and global convergence results were established for the new method. Experimental results provide evidence that our proposed method is in general superior to the classical steepest descent method and has a potential to significantly enhance the computational efficiency and robustness of the training process.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract An accelerated of the steepest descent method for solving unconstrained optimization problems is presented. which propose a fundamentally different conjugate gradient method, in which the well-known parameter βk is computed by an new formula. Under common assumptions, by using a modified Wolfe line search, descent property and global convergence results were established for the new method. Experimental results provide evidence that our proposed method is in general superior to the classical steepest descent method and has a potential to significantly enhance the computational efficiency and robustness of the training process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的加速梯度下降算法的共轭梯度法
摘要提出一种求解无约束优化问题的加速最陡下降法。提出了一种完全不同的共轭梯度法,其中众所周知的参数βk由一个新的公式计算。在一般假设条件下,利用改进的Wolfe线搜索,证明了新方法的下降性和全局收敛性。实验结果表明,本文提出的方法总体上优于经典的最陡下降方法,并有可能显著提高训练过程的计算效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
期刊最新文献
Volterra operator norms : a brief survey Negative Powers of Contractions Having a Strong AA+ Spectrum Sums and products of periodic functions The Maximum Locus of the Bloch Norm Mohamed Zarrabi 1964-2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1