Analysis of Spatial and Spatiotemporal Anomalies Using Persistent Homology: Case Studies with COVID-19 Data

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2021-07-19 DOI:10.1137/21m1435033
Abigail Hickok, D. Needell, M. A. Porter
{"title":"Analysis of Spatial and Spatiotemporal Anomalies Using Persistent Homology: Case Studies with COVID-19 Data","authors":"Abigail Hickok, D. Needell, M. A. Porter","doi":"10.1137/21m1435033","DOIUrl":null,"url":null,"abstract":"We develop a method for analyzing spatial and spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), which allows one to algorithmically detect geometric voids in a data set and quantify the persistence of such voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies;it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (which are an approach for visualizing PH), to track how the locations of the anomalies change with time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code at a single point in time. Second, we study a year-long data set of COVID-19 case rates in neighborhoods of the city of Los Angeles.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1435033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

We develop a method for analyzing spatial and spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), which allows one to algorithmically detect geometric voids in a data set and quantify the persistence of such voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies;it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (which are an approach for visualizing PH), to track how the locations of the anomalies change with time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code at a single point in time. Second, we study a year-long data set of COVID-19 case rates in neighborhoods of the city of Los Angeles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于持续同源性的时空异常分析:以COVID-19数据为例
我们开发了一种使用拓扑数据分析(TDA)来分析地理空间数据中的空间和时空异常的方法。为此,我们使用持久同源性(PH),它允许人们通过算法检测数据集中的几何空洞,并量化这些空洞的持久性。我们构造了一个有效的滤波单纯复形(FSC),使得FSC中的空隙与异常一一对应。我们的方法不仅仅是识别异常现象;它还对异常之间关系的信息进行编码。我们使用葡萄园,可以将其解释为时变持久图(这是一种可视化PH的方法),来跟踪异常位置如何随时间变化。我们使用空间异质的新冠肺炎数据进行了两个案例研究。首先,我们通过邮政编码在一个时间点检查纽约市的疫苗接种率。其次,我们研究了洛杉矶市社区新冠肺炎病例率的一年数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1