Mock-up experimental study on the performance of a combined cooling-domestic hot water-ground source heat pump system

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-03 DOI:10.1177/01436244221148306
Xinwen Zhang, K. Rhee, G. Jung
{"title":"Mock-up experimental study on the performance of a combined cooling-domestic hot water-ground source heat pump system","authors":"Xinwen Zhang, K. Rhee, G. Jung","doi":"10.1177/01436244221148306","DOIUrl":null,"url":null,"abstract":"A ground source heat pump (GSHP) delivers heat from a condenser to the ground when it operates with cooling mode. However, the ground temperature increases when the GSHP system operates for a long time. The increased ground temperature can deteriorate the GSHP’s coefficient of performance (COP). To maintain the balance between the ground temperature and COP, the condensation heat from the cooling GSHP can be used for other heating systems before it is transferred to the ground. This study proposes a combined GSHP system connecting a three RT cooling GSHP with a 1.5 RT domestic hot water (DHW) heat pump, and the performance of the system was evaluated through mock-up experiments. In the combined GSHP system, the condensation heat of the cooling system was used as the heat source of the DHW system. Therefore, the ground temperature could be reduced, and the performances of both the GSHP cooler and DHW heater pump could be enhanced. Mock-up experiments for performance evaluation were conducted with cooling-only, DHW-only, and cooling-DHW operational modes. The results showed that cooling-DHW operation slowed down the change in heat source temperature. In comparison with those of the cooling-only and DWH-only heat pumps, the COPs of the cooling heat pump and DHW heat pump of the combined system were increased by 12.93% and 15.47%, respectively. Moreover, the total COP of the cooling-DHW combined GSHP system increased by 4.4% and 29.55% in comparison with those of the cooling-only GSHP and DHW-only GSHP systems, respectively. Practical application A combined GSHP system was proposed by connecting a GSHP for space cooling with a heat pump for DHW to mitigate the ground temperature changes due to the long-term operation of the GSHP system. The combined system reuses the condensation heat generated by the cooling heat pump as the heat source of the DHW heat pump for ensuring the system performance and building energy saving. Therefore, this system is suitable for buildings with large energy use and heavy hot water demand, especially in summer, such as hospital and hotel buildings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221148306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A ground source heat pump (GSHP) delivers heat from a condenser to the ground when it operates with cooling mode. However, the ground temperature increases when the GSHP system operates for a long time. The increased ground temperature can deteriorate the GSHP’s coefficient of performance (COP). To maintain the balance between the ground temperature and COP, the condensation heat from the cooling GSHP can be used for other heating systems before it is transferred to the ground. This study proposes a combined GSHP system connecting a three RT cooling GSHP with a 1.5 RT domestic hot water (DHW) heat pump, and the performance of the system was evaluated through mock-up experiments. In the combined GSHP system, the condensation heat of the cooling system was used as the heat source of the DHW system. Therefore, the ground temperature could be reduced, and the performances of both the GSHP cooler and DHW heater pump could be enhanced. Mock-up experiments for performance evaluation were conducted with cooling-only, DHW-only, and cooling-DHW operational modes. The results showed that cooling-DHW operation slowed down the change in heat source temperature. In comparison with those of the cooling-only and DWH-only heat pumps, the COPs of the cooling heat pump and DHW heat pump of the combined system were increased by 12.93% and 15.47%, respectively. Moreover, the total COP of the cooling-DHW combined GSHP system increased by 4.4% and 29.55% in comparison with those of the cooling-only GSHP and DHW-only GSHP systems, respectively. Practical application A combined GSHP system was proposed by connecting a GSHP for space cooling with a heat pump for DHW to mitigate the ground temperature changes due to the long-term operation of the GSHP system. The combined system reuses the condensation heat generated by the cooling heat pump as the heat source of the DHW heat pump for ensuring the system performance and building energy saving. Therefore, this system is suitable for buildings with large energy use and heavy hot water demand, especially in summer, such as hospital and hotel buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制冷-生活热水-地源热泵联合系统性能模型试验研究
地源热泵(GSHP)在制冷模式下运行时,将热量从冷凝器输送到地面。但地源热泵系统运行时间长,地温升高。地温升高会使地源热泵的性能系数(COP)下降。为了保持地温和COP之间的平衡,冷却地源热泵的冷凝热可以在转移到地面之前用于其他供暖系统。本研究提出了一种将3 RT制冷地源热泵与1.5 RT生活热水热泵(DHW)连接的组合地源热泵系统,并通过模拟实验对系统的性能进行了评估。在联合地源热泵系统中,冷却系统的冷凝热被用作DHW系统的热源。因此,可以降低地面温度,提高地源热泵冷却器和DHW热泵泵的性能。在仅制冷、仅dhw和冷却- dhw运行模式下进行了性能评估的实体实验。结果表明,冷却- dhw运行减缓了热源温度的变化。与纯冷热泵和纯DHW热泵相比,制冷热泵和DHW热泵联合系统的cop分别提高了12.93%和15.47%。与纯冷地源热泵和纯dhw地源热泵相比,制冷- dhw联合地源热泵系统的总COP分别提高了4.4%和29.55%。为了缓解地源热泵系统长期运行对地面温度的影响,提出了将地源热泵系统与地源热泵系统相结合的组合系统。联合系统将制冷热泵产生的冷凝热作为DHW热泵的热源,以保证系统性能和建筑节能。因此,本系统适用于能耗大、热水需求量大的建筑,特别是夏季,如医院、酒店等建筑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1