Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Probability Pub Date : 2020-12-28 DOI:10.1214/22-aap1828
G. Pagès, Fabien Panloup
{"title":"Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds","authors":"G. Pagès, Fabien Panloup","doi":"10.1214/22-aap1828","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1828","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有乘性噪声的未调整Langevin算法:总变异和Wasserstein边界
在本文中,我们主要讨论了具有可能相乘扩散项(非常扩散系数)的遍历扩散的欧拉格式的非渐近界。更准确地说,本文的目标是控制步长减小的标准欧拉格式({在蒙特卡罗文献中通常称为Unadjusted Langevin算法})到这种遍历扩散的不变分布的距离。在适当的Lyapunov设置和扩散系数的{均匀}椭圆性假设下,我们建立(或改进)了乘性和加性框架下的总变差和$L^1$-Wasserstein距离的边界。这些边界依赖于使用{随机分析}适应递减步长设置的弱误差展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
期刊最新文献
Disagreement coupling of Gibbs processes with an application to Poisson approximation Hydrodynamic limit for the Kob–Andersen model Geometry of random Cayley graphs of Abelian groups The trunks of CLE(4) explorations Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1