A spectral decomposition quality assessment tool for multi-wavelength AUC experiments with UltraScan

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2023-03-17 DOI:10.1007/s00249-023-01640-5
Saeed Mortezazadeh, Borries Demeler
{"title":"A spectral decomposition quality assessment tool for multi-wavelength AUC experiments with UltraScan","authors":"Saeed Mortezazadeh,&nbsp;Borries Demeler","doi":"10.1007/s00249-023-01640-5","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recently developed technique that has proven to be a promising tool to investigate mixtures of molecules containing multiple chromophores. It provides an orthogonal separation approach by distinguishing molecules based on their spectral and hydrodynamic properties. Existing software implementations do not permit the user to assess the integrity of the spectral decomposition. To address this shortcoming, we developed a new spectral decomposition residual visualization module, which monitors the accuracy of the spectral decomposition. This module assists the user by providing visual and statistical feedback from the decomposition. The software has been integrated into the UltraScan software suite and an example of a mixture containing thyroglobulin and DNA is presented for illustration purposes.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01640-5.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01640-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recently developed technique that has proven to be a promising tool to investigate mixtures of molecules containing multiple chromophores. It provides an orthogonal separation approach by distinguishing molecules based on their spectral and hydrodynamic properties. Existing software implementations do not permit the user to assess the integrity of the spectral decomposition. To address this shortcoming, we developed a new spectral decomposition residual visualization module, which monitors the accuracy of the spectral decomposition. This module assists the user by providing visual and statistical feedback from the decomposition. The software has been integrated into the UltraScan software suite and an example of a mixture containing thyroglobulin and DNA is presented for illustration purposes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于UltraScan的多波长AUC实验光谱分解质量评估工具
多波长分析超离心(MW-AUC)是最近发展起来的一种技术,已被证明是研究含有多种发色团的分子混合物的一种很有前途的工具。它提供了一种正交分离方法,根据分子的光谱和流体力学性质来区分分子。现有的软件实现不允许用户评估谱分解的完整性。为了解决这一问题,我们开发了一个新的光谱分解残差可视化模块,用于监测光谱分解的精度。该模块通过提供来自分解的视觉和统计反馈来帮助用户。该软件已集成到UltraScan软件套件中,并提供了一个含有甲状腺球蛋白和DNA的混合物的示例以作说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. Extreme enthalpy‒entropy compensation in the dimerization of small solutes in aqueous solution. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. Computational study on the impact of linkage sequence on the structure and dynamics of lignin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1