{"title":"Developed greener method based on MW implementation in manufacturing CNFs","authors":"Loai Aljerf, Rim Nadra","doi":"10.1504/IJNM.2019.10020302","DOIUrl":null,"url":null,"abstract":"This study comes as the first trial that uses microwave (MW) in combination with assisted chemical vapour deposition (CVD) to generate homogeneous carbon nanofibers (CNFs) at short period thermal reaction. The outcomes confirmed that these materials are of highly-ordered pyrolitic graphite nature. CNFs were obtained having uniform diameters (80-150 nm) and long fibres (0.82-1.75 μm). SEM and TEM evaluations revealed relatively less damage in fractured surfaces and the TGA exhibited insignificant change of CNFs during thermal decomposition. The 'solid' CNFs showed clear properties as disorder, crystalline, and bent graphitic sheets. The as-prepared CNTs demonstrated good MW-absorption properties with superior performance which could be due to the combination of the dielectric-type absorption and the interference of multi-reflected MW. This enhancement gave 97% purity of the novel manufactured CNFs. Therefore, we recommend our greener nanoproducts for industries as energy, pharmaceutical, cosmetics, textile, sensors, electronics, vehicles, and both of quantum dots (QD) and fluorescent C-dots.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10020302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 87
Abstract
This study comes as the first trial that uses microwave (MW) in combination with assisted chemical vapour deposition (CVD) to generate homogeneous carbon nanofibers (CNFs) at short period thermal reaction. The outcomes confirmed that these materials are of highly-ordered pyrolitic graphite nature. CNFs were obtained having uniform diameters (80-150 nm) and long fibres (0.82-1.75 μm). SEM and TEM evaluations revealed relatively less damage in fractured surfaces and the TGA exhibited insignificant change of CNFs during thermal decomposition. The 'solid' CNFs showed clear properties as disorder, crystalline, and bent graphitic sheets. The as-prepared CNTs demonstrated good MW-absorption properties with superior performance which could be due to the combination of the dielectric-type absorption and the interference of multi-reflected MW. This enhancement gave 97% purity of the novel manufactured CNFs. Therefore, we recommend our greener nanoproducts for industries as energy, pharmaceutical, cosmetics, textile, sensors, electronics, vehicles, and both of quantum dots (QD) and fluorescent C-dots.