{"title":"Advances in nonlinear spectroscopy using phase modulated light fields: prospective applications in perturbative and non-perturbative regimes","authors":"K. Karki, M. Ciappina","doi":"10.1080/23746149.2022.2090856","DOIUrl":null,"url":null,"abstract":"ABSTRACT Since its first implementation in 2006, in fluorescence detected Fourier transform excitation spectroscopy of rubidium atoms, phase modulation is being increasingly used in nonlinear spectroscopy. Some of the important features of the technique are the excitation spectroscopy using signals that are relevant to photoactive devices (fluorescence and photocurrent), prospect of nonlinear spectroscopy of isolated systems such as single quantum dots or molecules, multidimensional spectroscopy, investigation of higher order recombination processes in semiconductors, etc. Although most of applications of phase modulated light fields have been on nonlinear spectroscopy in the perturbative regime, few efforts have been made recently to use it in the nonperturbative regime. In this review, we discuss the development of the technique since its inception, recent advances and future applications in strong field laser–matter interactions. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2090856","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT Since its first implementation in 2006, in fluorescence detected Fourier transform excitation spectroscopy of rubidium atoms, phase modulation is being increasingly used in nonlinear spectroscopy. Some of the important features of the technique are the excitation spectroscopy using signals that are relevant to photoactive devices (fluorescence and photocurrent), prospect of nonlinear spectroscopy of isolated systems such as single quantum dots or molecules, multidimensional spectroscopy, investigation of higher order recombination processes in semiconductors, etc. Although most of applications of phase modulated light fields have been on nonlinear spectroscopy in the perturbative regime, few efforts have been made recently to use it in the nonperturbative regime. In this review, we discuss the development of the technique since its inception, recent advances and future applications in strong field laser–matter interactions. GRAPHICAL ABSTRACT
期刊介绍:
Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including:
Chemistry
Materials Science
Engineering
Biology
Medicine