Sheng Liu , Xiangyun Wan , Shuanggen Jin , Bin Jia , Songbai Xuan , Quan Lou , Binbin Qin , Rongfu Peng , Dali Sun
{"title":"Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint","authors":"Sheng Liu , Xiangyun Wan , Shuanggen Jin , Bin Jia , Songbai Xuan , Quan Lou , Binbin Qin , Rongfu Peng , Dali Sun","doi":"10.1016/j.geog.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The gravity and magnetic data can be adopted to interpret the internal structure of the Earth. To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models, the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data. The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients. The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference. Then, the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models. Therefore, the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least, and the compression ratio increases with the increase of the number of grid cells. The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 4","pages":"Pages 331-346"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000046","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth. To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models, the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data. The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients. The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference. Then, the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models. Therefore, the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least, and the compression ratio increases with the increase of the number of grid cells. The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.