Influence of sodium-montmorillonite nanoclay on flammability, thermal stability, morphology, and mechanical properties of rigid water-blown palm oil-based polyurethane foam
{"title":"Influence of sodium-montmorillonite nanoclay on flammability, thermal stability, morphology, and mechanical properties of rigid water-blown palm oil-based polyurethane foam","authors":"M. H. Dzulkifli, R. A. Majid, M. Yahya","doi":"10.1177/02624893231193499","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental works on rigid palm oil-based polyurethane (PU) foam reinforced with sodium-montmorillonite (Na-MMT). Filler loading was varied between 1 and 10 wt %., and the obtained foam was characterized for its combustibility, morphology, thermal stability, and mechanical response. Exfoliated clay microstructure was exhibited at lower Na-MMT loadings. Addition of nanoclay into the PU foam failed to impart any discernable improvement with regards to its flammability, believed due to stronger influence of low-functionality palm oil polyol used. Apparent improvement in thermal stability was observed at low clay amounts. Foam with finer cell size was obtained in the presence of Na-MMT, however only until a certain loading limit. Compressive strength generally increases with increasing clay content, but after 3 wt % the property deteriorated. Peculiarly, compressive strength rose again at 5 wt % and 6 wt % – postulated due to additional load-bearing effect of ‘integral skin’ – before plummeting back again beyond this value.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"42 1","pages":"140 - 155"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893231193499","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the experimental works on rigid palm oil-based polyurethane (PU) foam reinforced with sodium-montmorillonite (Na-MMT). Filler loading was varied between 1 and 10 wt %., and the obtained foam was characterized for its combustibility, morphology, thermal stability, and mechanical response. Exfoliated clay microstructure was exhibited at lower Na-MMT loadings. Addition of nanoclay into the PU foam failed to impart any discernable improvement with regards to its flammability, believed due to stronger influence of low-functionality palm oil polyol used. Apparent improvement in thermal stability was observed at low clay amounts. Foam with finer cell size was obtained in the presence of Na-MMT, however only until a certain loading limit. Compressive strength generally increases with increasing clay content, but after 3 wt % the property deteriorated. Peculiarly, compressive strength rose again at 5 wt % and 6 wt % – postulated due to additional load-bearing effect of ‘integral skin’ – before plummeting back again beyond this value.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.