Random Forest Clustering Identifies Three Subgroups of β-Thalassemia with Distinct Clinical Severity

IF 0.6 Q4 HEMATOLOGY Thalassemia Reports Pub Date : 2022-02-18 DOI:10.3390/thalassrep12010004
Angela Vitrano, K. Musallam, A. Meloni, Sebastiano Addario Pollina, M. Karimi, A. El‐Beshlawy, M. Hajipour, V. Di Marco, S. Ansari, A. Filosa, P. Ricchi, A. Ceci, S. Daar, E. Vlachaki, S. Singer, Z. Naserullah, A. Pepe, S. Scondotto, G. Dardanoni, F. Bonifazi, V. Sankaran, E. Vichinsky, A. Taher, A. Maggio
{"title":"Random Forest Clustering Identifies Three Subgroups of β-Thalassemia with Distinct Clinical Severity","authors":"Angela Vitrano, K. Musallam, A. Meloni, Sebastiano Addario Pollina, M. Karimi, A. El‐Beshlawy, M. Hajipour, V. Di Marco, S. Ansari, A. Filosa, P. Ricchi, A. Ceci, S. Daar, E. Vlachaki, S. Singer, Z. Naserullah, A. Pepe, S. Scondotto, G. Dardanoni, F. Bonifazi, V. Sankaran, E. Vichinsky, A. Taher, A. Maggio","doi":"10.3390/thalassrep12010004","DOIUrl":null,"url":null,"abstract":"In this work, we aimed to establish subgroups of clinical severity in a global cohort of β-thalassemia through unsupervised random forest (RF) clustering. We used a large global dataset of 7910 β-thalassemia patients and evaluated 19 indicators of phenotype severity (IPhS) to determine their contribution and relatedness in grouping β-thalassemia patients into clusters using RF analysis. RF clustering suggested that three clusters with minimal overlapping exist (classification error rate: 4.3%), and six important IPhS were identified: the current age of the patient, the mean serum ferritin level, the age at diagnosis, the age at first transfusion, the age at first iron chelation, and the number of complications. Cluster 3 represented patients with early initiation of transfusion and iron chelation, considerable iron overload, and early mortality from heart failure. Patients in Cluster 2 had lower serum ferritin levels, although they had a higher number of complications manifesting overtime. Patients in Cluster 1 represented a subgroup with delayed or absent transfusion and iron chelation, but with a high morbidity rate. Hepatic disease and cancer were dominant causes of death in patients in Cluster 1 and 2. Our findings established that patients with β-thalassemia can be clustered into three groups based on six parameters of phenotype severity.","PeriodicalId":22261,"journal":{"name":"Thalassemia Reports","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalassemia Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/thalassrep12010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we aimed to establish subgroups of clinical severity in a global cohort of β-thalassemia through unsupervised random forest (RF) clustering. We used a large global dataset of 7910 β-thalassemia patients and evaluated 19 indicators of phenotype severity (IPhS) to determine their contribution and relatedness in grouping β-thalassemia patients into clusters using RF analysis. RF clustering suggested that three clusters with minimal overlapping exist (classification error rate: 4.3%), and six important IPhS were identified: the current age of the patient, the mean serum ferritin level, the age at diagnosis, the age at first transfusion, the age at first iron chelation, and the number of complications. Cluster 3 represented patients with early initiation of transfusion and iron chelation, considerable iron overload, and early mortality from heart failure. Patients in Cluster 2 had lower serum ferritin levels, although they had a higher number of complications manifesting overtime. Patients in Cluster 1 represented a subgroup with delayed or absent transfusion and iron chelation, but with a high morbidity rate. Hepatic disease and cancer were dominant causes of death in patients in Cluster 1 and 2. Our findings established that patients with β-thalassemia can be clustered into three groups based on six parameters of phenotype severity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林聚类识别具有不同临床严重程度的β-地中海贫血的三个亚组
在这项工作中,我们旨在通过无监督随机森林(RF)聚类在全球β-地中海贫血队列中建立临床严重程度亚组。我们使用了7910名β-地中海贫血患者的大型全球数据集,并评估了19项表型严重程度(IPhS)指标,以确定它们在使用RF分析将β-地中海贫血患者分组中的贡献和相关性。RF聚类提示存在3个重叠最小的聚类(分类错误率4.3%),并识别出6个重要的ips:患者当前年龄、平均血清铁蛋白水平、诊断年龄、首次输血年龄、首次铁螯合年龄、并发症数量。聚类3代表患者早期开始输血和铁螯合,相当大的铁超载,和早期死亡的心力衰竭。第2组患者血清铁蛋白水平较低,但随时间推移出现的并发症较多。第1组患者是延迟或不输血和铁螯合的亚组,但发病率高。肝脏疾病和癌症是第1类和第2类患者的主要死亡原因。我们的研究结果表明,β-地中海贫血患者可以根据表型严重程度的六个参数分为三组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thalassemia Reports
Thalassemia Reports HEMATOLOGY-
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊最新文献
β Thalassemia Mutation Flow in Indonesia: A Migration Perspective Amlodipine Therapy in β-Thalassemia Patients: A Systematic Review and Meta-Analysis on Ferritin Levels and Liver MRI T2* Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia Infection and Potential Challenge of Childhood Mortality in Sickle Cell Disease: A Comprehensive Review of the Literature from a Global Perspective Association between Glomerular Filtration Rate and β-Thalassemia Major: A Systematic Review and Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1