Evaluating how well active fault mapping predicts earthquake surface-rupture locations

IF 1.7 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geosphere Pub Date : 2023-06-30 DOI:10.1130/ges02611.1
C. Scott, Rachel Adam, R. Arrowsmith, C. Madugo, Joseph Powell, J. Ford, Brian Gray, R. Koehler, Stephen Thompson, A. Sarmiento, T. Dawson, A. Kottke, Elaine K. Young, A. Williams, Ozgar Kozaci, M. Oskin, R. Burgette, A. Streig, G. Seitz, W. Page, C. Badin, L. Carnes, J. Giblin, James McNeil, J. Graham, Daniel T. Chupik, Sean Ingersoll
{"title":"Evaluating how well active fault mapping predicts earthquake surface-rupture locations","authors":"C. Scott, Rachel Adam, R. Arrowsmith, C. Madugo, Joseph Powell, J. Ford, Brian Gray, R. Koehler, Stephen Thompson, A. Sarmiento, T. Dawson, A. Kottke, Elaine K. Young, A. Williams, Ozgar Kozaci, M. Oskin, R. Burgette, A. Streig, G. Seitz, W. Page, C. Badin, L. Carnes, J. Giblin, James McNeil, J. Graham, Daniel T. Chupik, Sean Ingersoll","doi":"10.1130/ges02611.1","DOIUrl":null,"url":null,"abstract":"Earthquake surface-fault rupture location uncertainty is a key factor in fault displacement hazard analysis and informs hazard and risk mitigation strategies. Geologists often predict future rupture locations from fault mapping based on the geomorphology interpreted from remote-sensing data sets. However, surface processes can obscure fault location, fault traces may be mapped in error, and a future rupture may not break every fault trace. We assessed how well geomorphology-based fault mapping predicted surface ruptures for seven earthquakes: 1983 M 6.9 Borah Peak, 2004 M 6.0 Parkfield, 2010 M 7.2 El Mayor–Cucapah, 2011 M 6.7 Fukushima-Hamadori, 2014 M 6.0 South Napa, 2016 M 7.8 Kaikoura, and 2016 M 7 Kumamoto. We trained geoscience students to produce active fault maps using topography and imagery acquired before the earthquakes. A geologic professional completed a “control” map. Mappers used a new “geomorphic indicator ranking” approach to rank fault confidence based on geomorphologic landforms. We determined the accuracy of the mapped faults by comparing the fault maps to published rupture maps. We defined predicted ruptures as ruptures near a fault (50–200 m, depending on the fault confidence) that interacted with the landscape in a similar way to the fault. The mapped faults predicted between 12% to 68% of the principal rupture length for the studied earthquakes. The median separation distances between predicted ruptures and strong, distinct, or weak faults were 15–30 m. Our work highlights that mapping future fault ruptures is an underappreciated challenge of fault displacement hazard analysis—even for experts—with implications for risk management, engineering site assessments, and fault exclusion zones.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02611.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Earthquake surface-fault rupture location uncertainty is a key factor in fault displacement hazard analysis and informs hazard and risk mitigation strategies. Geologists often predict future rupture locations from fault mapping based on the geomorphology interpreted from remote-sensing data sets. However, surface processes can obscure fault location, fault traces may be mapped in error, and a future rupture may not break every fault trace. We assessed how well geomorphology-based fault mapping predicted surface ruptures for seven earthquakes: 1983 M 6.9 Borah Peak, 2004 M 6.0 Parkfield, 2010 M 7.2 El Mayor–Cucapah, 2011 M 6.7 Fukushima-Hamadori, 2014 M 6.0 South Napa, 2016 M 7.8 Kaikoura, and 2016 M 7 Kumamoto. We trained geoscience students to produce active fault maps using topography and imagery acquired before the earthquakes. A geologic professional completed a “control” map. Mappers used a new “geomorphic indicator ranking” approach to rank fault confidence based on geomorphologic landforms. We determined the accuracy of the mapped faults by comparing the fault maps to published rupture maps. We defined predicted ruptures as ruptures near a fault (50–200 m, depending on the fault confidence) that interacted with the landscape in a similar way to the fault. The mapped faults predicted between 12% to 68% of the principal rupture length for the studied earthquakes. The median separation distances between predicted ruptures and strong, distinct, or weak faults were 15–30 m. Our work highlights that mapping future fault ruptures is an underappreciated challenge of fault displacement hazard analysis—even for experts—with implications for risk management, engineering site assessments, and fault exclusion zones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估活动断层作图预测地震地表破裂位置的效果
地震表面断层破裂位置的不确定性是断层位移危险性分析的关键因素,并为危险和风险缓解策略提供信息。地质学家通常根据遥感数据集解释的地貌,通过断层测绘来预测未来的断裂位置。然而,地表过程可能会模糊断层位置,断层痕迹可能被错误地映射,未来的破裂可能不会破坏每个断层痕迹。我们评估了基于地貌学的断层测绘对七次地震的地表破裂预测效果:1983年M 6.9 Borah Peak、2004年M 6.0 Parkfield、2010年M 7.2 El Mayor–Cucapah、2011年M 6.7 Fukushima Hamadori、2014年M 6.0 South Napa、2016年M 7.8 Kaikoura和2016年M 7 Kumamoto。我们训练地学学生使用地震前获得的地形和图像绘制活动断层图。一位地质专业人员绘制了一张“控制”图。测绘人员使用了一种新的“地貌指标排名”方法,根据地貌对断层置信度进行排名。我们通过将断层图与已发布的断裂图进行比较来确定绘制断层图的准确性。我们将预测断裂定义为断层附近的断裂(50-200米,取决于断层置信度),该断裂以类似于断层的方式与景观相互作用。绘制的断层预测了所研究地震主破裂长度的12%至68%。预测断裂与强、明显或弱断层之间的中间分隔距离为15-30m。我们的工作强调,绘制未来断层断裂是断层位移危险分析的一个未被充分重视的挑战,即使对专家来说也是如此,这对风险管理、工程现场评估和断层禁区都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosphere
Geosphere 地学-地球科学综合
CiteScore
4.40
自引率
12.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.
期刊最新文献
U-Pb geochronology and petrography of Neoproterozoic to early Cambrian volcanic rocks in basement crustal terranes beneath the deep-water Gulf of Mexico Precursors to a continental-arc ignimbrite flare-up: Early central volcanoes of the San Juan Mountains, Colorado, USA Provenance shifts in bauxitic clay from Zibo, North China Craton, links tectonics and climate to environmental perturbation Reconciling complex stratigraphic frameworks reveals temporally and geographically variable depositional patterns of the Campanian Ignimbrite Neogene faulting, basin development, and relief generation in the southern Klamath Mountains (USA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1