{"title":"Inference of finite mixture models and the effect of binning","authors":"Eva-Maria Geissen, J. Hasenauer, N. Radde","doi":"10.1515/sagmb-2018-0035","DOIUrl":null,"url":null,"abstract":"Abstract Finite mixture models are widely used in the life sciences for data analysis. Yet, the calibration of these models to data is still challenging as the optimization problems are often ill-posed. This holds for censored and uncensored data, and is caused by symmetries and other types of non-identifiabilities. Here, we discuss the problem of parameter estimation and model selection for finite mixture models from a theoretical perspective. We provide a review of the existing literature and illustrate the ill-posedness of the calibration problem for mixtures of uniform distributions and mixtures of normal distributions. Furthermore, we assess the effect of interval censoring on this estimation problem. Interestingly, we find that a proper treatment of censoring can facilitate the estimation of the number of mixture components compared to inference from uncensored data, which is an at first glance surprising result. The aim of the manuscript is to raise awareness of challenges in the calibration of finite mixture models and to provide an overview about available techniques.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0035","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Finite mixture models are widely used in the life sciences for data analysis. Yet, the calibration of these models to data is still challenging as the optimization problems are often ill-posed. This holds for censored and uncensored data, and is caused by symmetries and other types of non-identifiabilities. Here, we discuss the problem of parameter estimation and model selection for finite mixture models from a theoretical perspective. We provide a review of the existing literature and illustrate the ill-posedness of the calibration problem for mixtures of uniform distributions and mixtures of normal distributions. Furthermore, we assess the effect of interval censoring on this estimation problem. Interestingly, we find that a proper treatment of censoring can facilitate the estimation of the number of mixture components compared to inference from uncensored data, which is an at first glance surprising result. The aim of the manuscript is to raise awareness of challenges in the calibration of finite mixture models and to provide an overview about available techniques.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.