Sistem Pendeteksi Viabilitas Benih Kacang Tanah Berdasarkan Luas Area HSV Color

Haura Fikriyah Hakimah Hakimah, Trisno Yuwono Putro, Sabar Pramono, Eny Widajati
{"title":"Sistem Pendeteksi Viabilitas Benih Kacang Tanah Berdasarkan Luas Area HSV Color","authors":"Haura Fikriyah Hakimah Hakimah, Trisno Yuwono Putro, Sabar Pramono, Eny Widajati","doi":"10.22146/IJEIS.68731","DOIUrl":null,"url":null,"abstract":"Peanut seed tetrazolium test evaluation is usually by eye and a microscope. This method has a weaknesses in the accuracy of reading the color intensity, and  is more subjective. The seeds was observed one by one so that the observation is not effective. To make observations more accurate, efficient, and effective, digital image processing can be applied to the seed viability evaluation. The method can be used was the detection of the Hue, Saturation, and Value color area in reading the red color pattern resulting from tetrazolium test.The result is the system can detect a maximum of 25  seeds with an operational time of 22-25 seconds in one detection. Seed classification is the seeds are predicted to normal, abnormal, and dead. The process of classifying seeds is identified based on the red color pattern resulting from the detection of the area of 4 HSV color ranges, namely red (175,100,20:180,255,255), pink (160, 100,20 : 174,150,255), white 1 (175,0,0 : 180,100,255), and white 2 (0,0,0 : 100,255,255). The results show that the accuracy of the system in reading the total number of seeds is 100% with the detection error of  HSV color area is 1.54%.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.68731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Peanut seed tetrazolium test evaluation is usually by eye and a microscope. This method has a weaknesses in the accuracy of reading the color intensity, and  is more subjective. The seeds was observed one by one so that the observation is not effective. To make observations more accurate, efficient, and effective, digital image processing can be applied to the seed viability evaluation. The method can be used was the detection of the Hue, Saturation, and Value color area in reading the red color pattern resulting from tetrazolium test.The result is the system can detect a maximum of 25  seeds with an operational time of 22-25 seconds in one detection. Seed classification is the seeds are predicted to normal, abnormal, and dead. The process of classifying seeds is identified based on the red color pattern resulting from the detection of the area of 4 HSV color ranges, namely red (175,100,20:180,255,255), pink (160, 100,20 : 174,150,255), white 1 (175,0,0 : 180,100,255), and white 2 (0,0,0 : 100,255,255). The results show that the accuracy of the system in reading the total number of seeds is 100% with the detection error of  HSV color area is 1.54%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于HSV颜色区域的地桃种子活力检测系统
花生籽四氮唑试验评价通常采用肉眼和显微镜进行。这种方法在读取颜色强度的准确性方面存在弱点,并且更主观。种子被一个接一个地观察,所以观察是无效的。为了使观测更加准确、高效和有效,可以将数字图像处理应用于种子活力评估。该方法可用于检测色调、饱和度和值颜色区域,读取四唑啉测试产生的红色图案。结果是,该系统在一次检测中最多可以检测到25颗种子,操作时间为22-25秒。种子分类是指种子被预测为正常、异常和死亡。种子分类过程是基于对4个HSV颜色范围的区域的检测产生的红色模式来识别的,即红色(175100,20:180255255)、粉红色(160100,20:174150255)、白色1(175,0,0:18010255)和白色2(0,0,0:10025255)。结果表明,该系统读取种子总数的准确率为100%,HSV颜色区域的检测误差为1.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Utilization of Sensor technology as a Sport Technology Innovation in Athlete Performance Measurement: Research Trends Pemilah Jenis Daun Mangga Melalui Deteksi RGB Menggunakan Sistem Pengolahan Citra Sistem Pengering Daun Kelor Berbasis Internet of Things dan Artificial Intteligence Penghematan Daya Pada Sensor Node Sistem Monitoring Kualitas Udara Design and Build Hydroponic Installations and Applications Using IoT-Based Multisensors with Solar Panel Electrical Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1