A. Appusamy, Natarajan Nanjappan, P. Eswaran, M. Subramanian
{"title":"The effect of natural Gongura roselle fiber on the mechanical properties of 3D printed ABS and PLA composites","authors":"A. Appusamy, Natarajan Nanjappan, P. Eswaran, M. Subramanian","doi":"10.14314/polimery.2022.3.4","DOIUrl":null,"url":null,"abstract":"The influence of the natural Gongura roselle fiber on the tensile and flexural properties as well as on Shore D hardness of acrylonitrile-butadiene-styrene (ABS) and poly (lactic acid) (PLA) was investigated. The composites were printed in fused deposition modeling (FDM) 3D technique. The addition of natural fiber improved the mechanical properties of the tested composites, while the flexural strength, modulus and hardness were better in the case of ABS-based composite. Whereas, PLA-based composites showed higher tensile strength. The influence of the nozzle angle on the mechanical properties of the composites was also investigated. The best results have been obtained when using an angle of 0 °.","PeriodicalId":20319,"journal":{"name":"Polimery","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14314/polimery.2022.3.4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The influence of the natural Gongura roselle fiber on the tensile and flexural properties as well as on Shore D hardness of acrylonitrile-butadiene-styrene (ABS) and poly (lactic acid) (PLA) was investigated. The composites were printed in fused deposition modeling (FDM) 3D technique. The addition of natural fiber improved the mechanical properties of the tested composites, while the flexural strength, modulus and hardness were better in the case of ABS-based composite. Whereas, PLA-based composites showed higher tensile strength. The influence of the nozzle angle on the mechanical properties of the composites was also investigated. The best results have been obtained when using an angle of 0 °.
期刊介绍:
The "Polimery" journal, of international circulation, is publishing peerreviewed scientific and technical research papers covering polymer science and technology in the field of polymers, rubbers, chemical fibres and paints. The range of topics covered are raw materials, polymer synthesis, processing and applications of polymers. Apart from scientific and technical research papers the monthly includes technical and commercial information such as reports from fairs and exhibitions as well as home, world and technical news.
“Polimery "- an international journal covering the following topics: polymers, rubber, chemical fibres and paints.
The Journal is addressed to scientists, managers and engineering staff of universities, Polish Academy of Sciences, R&D institutions, industry, specializing in polymer chemistry, physical chemistry, technology and processing. “Polimery” publishes original, reviewed research, scientific and technology papers in the field of polymer synthesis, analysis, technology and modification, processing, properties, applications and recycling.