{"title":"Hierarchical spline for time series prediction: An application to naval ship engine failure rate","authors":"Hyunji Moon, Jinwoo Choi","doi":"10.1002/ail2.22","DOIUrl":null,"url":null,"abstract":"<p>Predicting equipment failure is important because it could improve availability and cut down the operating budget. Previous literature has attempted to model failure rate with bathtub-formed function, Weibull distribution, Bayesian network, or analytic hierarchy process. But these models perform well with a sufficient amount of data and could not incorporate the two salient characteristics: imbalanced category and sharing structure. Hierarchical model has the advantage of partial pooling. The proposed model is based on Bayesian hierarchical B-spline. Time series of the failure rate of 99 Republic of Korea Naval ships are modeled hierarchically, where each layer corresponds to ship engine, engine type, and engine archetype. As a result of the analysis, the suggested model predicted the failure rate of an entire lifetime accurately in multiple situational conditions, such as prior knowledge of the engine.</p>","PeriodicalId":72253,"journal":{"name":"Applied AI letters","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ail2.22","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied AI letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ail2.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Predicting equipment failure is important because it could improve availability and cut down the operating budget. Previous literature has attempted to model failure rate with bathtub-formed function, Weibull distribution, Bayesian network, or analytic hierarchy process. But these models perform well with a sufficient amount of data and could not incorporate the two salient characteristics: imbalanced category and sharing structure. Hierarchical model has the advantage of partial pooling. The proposed model is based on Bayesian hierarchical B-spline. Time series of the failure rate of 99 Republic of Korea Naval ships are modeled hierarchically, where each layer corresponds to ship engine, engine type, and engine archetype. As a result of the analysis, the suggested model predicted the failure rate of an entire lifetime accurately in multiple situational conditions, such as prior knowledge of the engine.