In Vitro Coculture of Primary Human Cells to Analyze Angiogenesis, Osteogenesis, and the Inflammatory Response to Newly Developed Osteosynthesis Material for Pediatric Maxillofacial Traumatology: A Potential Pretesting Model before In Vivo Experiments

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-08-04 DOI:10.1155/2023/4040504
E. Dohle, Tatjana Fecht, Tobias Wolfram, F. Reinauer, Anke Wunder, Katja Heppe, R. Sader, C. Kirkpatrick, S. Ghanaati
{"title":"In Vitro Coculture of Primary Human Cells to Analyze Angiogenesis, Osteogenesis, and the Inflammatory Response to Newly Developed Osteosynthesis Material for Pediatric Maxillofacial Traumatology: A Potential Pretesting Model before In Vivo Experiments","authors":"E. Dohle, Tatjana Fecht, Tobias Wolfram, F. Reinauer, Anke Wunder, Katja Heppe, R. Sader, C. Kirkpatrick, S. Ghanaati","doi":"10.1155/2023/4040504","DOIUrl":null,"url":null,"abstract":"During the present study, an in vitro coculture bone tissue mimic based on primary osteoblasts and primary endothelial cells was used for a complex and broad evaluation of a newly developed material for applications in pediatric maxillofacial traumatology. The biomaterial was composed of PDLLA (poly(D,L-lactide)) in various combinations with calcium carbonate (CC), magnesium (Mg), and chitosan (CH). Besides classical biocompatibility analyses, the present study evaluated material-dependent effects on fundamental processes that are essential for successful material integration and regeneration. Therefore, inflammation-associated factors such as E-selectin and interleukins were analyzed in the in vitro model system on gene expression and protein level depending on the different materials. Furthermore, in order to test the capability of vascularization of the material, the effect of the different materials on the formation of microvessel-like structures as well as the expression and release of proangiogenic factors was investigated in vitro in the bone coculture model. In addition, the mineralization capacity as well as the relative gene expression of osteogenic differentiation factors was analyzed in response to the different materials. As a result, the authors could assess the material combination PDLLA: CC CH as the most functionally tested material with regard to biocompatibility, inflammatory response, and microvessel-like structure formation as well as osteogenic differentiation in the in vitro coculture system. In conclusion, by using tissue-engineered human bone tissue equivalents as proposed here in an in vitro coculture model, biomaterial-mediated effects can be readily investigated. Moreover, it is proposed that these complex in vitro evaluations could contribute to the understanding and improvement of the development of novel materials for pediatric traumatological care for prospective clinical applications.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4040504","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

During the present study, an in vitro coculture bone tissue mimic based on primary osteoblasts and primary endothelial cells was used for a complex and broad evaluation of a newly developed material for applications in pediatric maxillofacial traumatology. The biomaterial was composed of PDLLA (poly(D,L-lactide)) in various combinations with calcium carbonate (CC), magnesium (Mg), and chitosan (CH). Besides classical biocompatibility analyses, the present study evaluated material-dependent effects on fundamental processes that are essential for successful material integration and regeneration. Therefore, inflammation-associated factors such as E-selectin and interleukins were analyzed in the in vitro model system on gene expression and protein level depending on the different materials. Furthermore, in order to test the capability of vascularization of the material, the effect of the different materials on the formation of microvessel-like structures as well as the expression and release of proangiogenic factors was investigated in vitro in the bone coculture model. In addition, the mineralization capacity as well as the relative gene expression of osteogenic differentiation factors was analyzed in response to the different materials. As a result, the authors could assess the material combination PDLLA: CC CH as the most functionally tested material with regard to biocompatibility, inflammatory response, and microvessel-like structure formation as well as osteogenic differentiation in the in vitro coculture system. In conclusion, by using tissue-engineered human bone tissue equivalents as proposed here in an in vitro coculture model, biomaterial-mediated effects can be readily investigated. Moreover, it is proposed that these complex in vitro evaluations could contribute to the understanding and improvement of the development of novel materials for pediatric traumatological care for prospective clinical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外共培养人原代细胞分析血管生成、成骨生成和对新开发的儿童颌面外伤骨合成材料的炎症反应:一种潜在的体内实验前预测试模型
在本研究中,一种基于原代成骨细胞和原代内皮细胞的体外共培养骨组织模拟物被用于对一种新开发的用于儿童颌面创伤学的材料进行复杂而广泛的评估。该生物材料由PDLLA(聚(D,L-丙交酯)与碳酸钙(CC)、镁(Mg)和壳聚糖(CH)的各种组合组成。除了经典的生物相容性分析外,本研究还评估了材料对基本过程的依赖性影响,这些基本过程对成功的材料整合和再生至关重要。因此,根据不同的材料,在体外模型系统中分析了炎症相关因素,如E-选择素和白细胞介素的基因表达和蛋白质水平。此外,为了测试该材料的血管化能力,在骨共培养模型中,在体外研究了不同材料对微血管样结构形成以及促血管生成因子表达和释放的影响。此外,还分析了不同材料的矿化能力以及成骨分化因子的相对基因表达。因此,作者可以在体外共培养系统中评估材料组合PDLLA:CC-CH在生物相容性、炎症反应、微血管样结构形成以及成骨分化方面是功能测试最多的材料。总之,通过在体外共培养模型中使用本文提出的组织工程化人骨组织等效物,可以很容易地研究生物材料介导的作用。此外,有人提出,这些复杂的体外评估可能有助于理解和改进用于儿科创伤护理的新型材料的开发,以供未来的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1