{"title":"Reliability Evaluation and Prediction Method with Small Samples","authors":"Hongyan Dui, Xinghui Dong, J. Tao","doi":"10.33889/ijmems.2023.8.4.032","DOIUrl":null,"url":null,"abstract":"How to accurately evaluate and predict the degradation state of the components with small samples is a critical and practical problem. To address the problems of unknown degradation state of components, difficulty in obtaining relevant environmental data and small sample size in the field of reliability prediction, a reliability evaluation and prediction method based on Cox model and 1D CNN-BiLSTM model is proposed in this paper. Taking the historical fault data of six components of a typical load-haul-dump (LHD) machine as an example, a reliability evaluation method based on Cox model with small sample size is applied by comparing the reliability evaluation models such as logistic regression (LR) model, support vector machine (SVM) model and back propagation neural network (BPNN) model in a comprehensive manner. On this basis, a reliability prediction method based on one-dimensional convolutional neural network-bi-directional long and short-term memory network (1D CNN-BiLSTM) is applied with the objective of minimizing the prediction error. The applicability as well as the effectiveness of the proposed model is verified by comparing typical time series prediction models such as the autoregressive integrated moving average (ARIMA) model and multiple linear regression (MLR). The experimental results show that the proposed model is valuable for the development of reliability plans and for the implementation of reliability maintenance activities.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.4.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
How to accurately evaluate and predict the degradation state of the components with small samples is a critical and practical problem. To address the problems of unknown degradation state of components, difficulty in obtaining relevant environmental data and small sample size in the field of reliability prediction, a reliability evaluation and prediction method based on Cox model and 1D CNN-BiLSTM model is proposed in this paper. Taking the historical fault data of six components of a typical load-haul-dump (LHD) machine as an example, a reliability evaluation method based on Cox model with small sample size is applied by comparing the reliability evaluation models such as logistic regression (LR) model, support vector machine (SVM) model and back propagation neural network (BPNN) model in a comprehensive manner. On this basis, a reliability prediction method based on one-dimensional convolutional neural network-bi-directional long and short-term memory network (1D CNN-BiLSTM) is applied with the objective of minimizing the prediction error. The applicability as well as the effectiveness of the proposed model is verified by comparing typical time series prediction models such as the autoregressive integrated moving average (ARIMA) model and multiple linear regression (MLR). The experimental results show that the proposed model is valuable for the development of reliability plans and for the implementation of reliability maintenance activities.
期刊介绍:
IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.