Changes in the distribution of annual maximum temperatures in Europe

G. Auld, G. Hegerl, I. Papastathopoulos
{"title":"Changes in the distribution of annual maximum temperatures in Europe","authors":"G. Auld, G. Hegerl, I. Papastathopoulos","doi":"10.5194/ascmo-9-45-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In this study we detect and quantify changes in the distribution of the annual maximum daily maximum temperature (TXx)\nin a large observation-based gridded data set of European daily temperature during the years 1950–2018. Several statistical models are considered, each of which analyses TXx using a generalized extreme-value (GEV) distribution with the GEV parameters varying smoothly over space.\nIn contrast to several previous studies which fit independent GEV models at the grid-box level, our models pull information from neighbouring grid boxes for more efficient parameter estimation. The GEV location and scale parameters are allowed to\nvary in time using the log of atmospheric CO2 as a covariate.\nChanges are detected most strongly in the GEV location parameter, with the TXx distributions generally shifting towards hotter temperatures. Averaged across our spatial domain, the 100-year return level of TXx based on the 2018 climate\nis approximately 2 ∘C (95 % confidence interval of [2.03,2.12] ∘C) hotter than that based on the 1950 climate. Moreover, averaged across our spatial domain, the 100-year return level of TXx based on the 1950 climate corresponds approximately to a 6-year return level in the 2018 climate.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-9-45-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In this study we detect and quantify changes in the distribution of the annual maximum daily maximum temperature (TXx) in a large observation-based gridded data set of European daily temperature during the years 1950–2018. Several statistical models are considered, each of which analyses TXx using a generalized extreme-value (GEV) distribution with the GEV parameters varying smoothly over space. In contrast to several previous studies which fit independent GEV models at the grid-box level, our models pull information from neighbouring grid boxes for more efficient parameter estimation. The GEV location and scale parameters are allowed to vary in time using the log of atmospheric CO2 as a covariate. Changes are detected most strongly in the GEV location parameter, with the TXx distributions generally shifting towards hotter temperatures. Averaged across our spatial domain, the 100-year return level of TXx based on the 2018 climate is approximately 2 ∘C (95 % confidence interval of [2.03,2.12] ∘C) hotter than that based on the 1950 climate. Moreover, averaged across our spatial domain, the 100-year return level of TXx based on the 1950 climate corresponds approximately to a 6-year return level in the 2018 climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲年最高气温分布的变化
摘要在这项研究中,我们检测并量化了1950-2018年欧洲日温度的大型观测网格数据集中年最高日最高温度(TXx)的分布变化。考虑了几种统计模型,每种模型都使用广义极值(GEV)分布分析TXx, GEV参数在空间上平滑变化。与之前的几项研究在网格盒级别拟合独立的GEV模型相比,我们的模型从相邻的网格盒中提取信息,以获得更有效的参数估计。使用大气CO2的对数作为协变量,允许GEV位置和尺度参数随时间变化。GEV位置参数的变化最为强烈,TXx分布通常向更热的温度方向移动。在我们的空间范围内,以2018年气候为基础的100年TXx的平均气温比以1950年气候为基础的100年气温高约2°C(95%可信区间为[2.03,2.12]°C)。此外,在整个空间域中平均,基于1950年气候的TXx的100年回归水平大致相当于2018年气候的6年回归水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
期刊最新文献
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency Comparison of climate time series – Part 5: Multivariate annual cycles Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1