Steffen Trümper, Václav Mencl, S. Opluštil, Sandra Niemirowska, Ronny Rößler
{"title":"LARGE WOODY DEBRIS ACCUMULATIONS IN THE LATE PENNSYLVANIAN TROPICS—EVOLUTIONARY SIGNAL OR TECTONO-CLIMATIC ARCHIVE?","authors":"Steffen Trümper, Václav Mencl, S. Opluštil, Sandra Niemirowska, Ronny Rößler","doi":"10.2110/palo.2022.003","DOIUrl":null,"url":null,"abstract":"Abstract: By colonizing drylands, plants fundamentally changed continental deposition and, thus, intensified the interaction between life and sediments. Fossil large woody debris in epiclastic strata is a key archive of this environmental turnover, although its interpretation remains challenging due to taphonomic biases. We review voluminous fluvial red-bed successions with sizeable silicified trunks that characterize Middle Pennsylvanian–lower Permian strata of east-central Europe. The stratigraphic occurrence, petrography, architecture of the deposits, and the preservation and nature of the fossil wood are discussed in the context of the tectono-climatic and vegetational evolution of the central-Pangean low latitudes. The log-bearing successions are assigned to five distinct, regionally traceable stratigraphic levels between the middle Moscovian and early Asselian. Up to 20 m long, mostly decorticated trunk fragments occur isolated in more or less feldspathic channel deposits, the architectures and dimensions of which point to large-scale river systems with highly variable discharge. Wood anatomy and floodplain adpression-fossils show that the trunks were derived from cordaitaleans, conifers, and arborescent sphenopsids in more diverse, gymnosperm-dominated dryland floras. The fossil record is biased towards successions formed in large-catchment river systems and, thus, does not accurately document the genuine nature of plant-distribution patterns. Rather, the strata show that large woody debris preservation depended on fluvial style and hydrological regime, hence turning the woody deposits into climate archives. The strata elucidate the climate development in equatorial Pangea, paralleling the acme of the Late Paleozoic Ice Age.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"37 1","pages":"251 - 291"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2022.003","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract: By colonizing drylands, plants fundamentally changed continental deposition and, thus, intensified the interaction between life and sediments. Fossil large woody debris in epiclastic strata is a key archive of this environmental turnover, although its interpretation remains challenging due to taphonomic biases. We review voluminous fluvial red-bed successions with sizeable silicified trunks that characterize Middle Pennsylvanian–lower Permian strata of east-central Europe. The stratigraphic occurrence, petrography, architecture of the deposits, and the preservation and nature of the fossil wood are discussed in the context of the tectono-climatic and vegetational evolution of the central-Pangean low latitudes. The log-bearing successions are assigned to five distinct, regionally traceable stratigraphic levels between the middle Moscovian and early Asselian. Up to 20 m long, mostly decorticated trunk fragments occur isolated in more or less feldspathic channel deposits, the architectures and dimensions of which point to large-scale river systems with highly variable discharge. Wood anatomy and floodplain adpression-fossils show that the trunks were derived from cordaitaleans, conifers, and arborescent sphenopsids in more diverse, gymnosperm-dominated dryland floras. The fossil record is biased towards successions formed in large-catchment river systems and, thus, does not accurately document the genuine nature of plant-distribution patterns. Rather, the strata show that large woody debris preservation depended on fluvial style and hydrological regime, hence turning the woody deposits into climate archives. The strata elucidate the climate development in equatorial Pangea, paralleling the acme of the Late Paleozoic Ice Age.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.