FBAdLibrarian and Pykognition: open science tools for the collection and emotion detection of images in Facebook political ads with computer vision

IF 2.6 2区 社会学 Q1 COMMUNICATION Journal of Information Technology & Politics Pub Date : 2021-05-21 DOI:10.1080/19331681.2021.1928579
Rasmus Schmøkel, Michael Bossetta
{"title":"FBAdLibrarian and Pykognition: open science tools for the collection and emotion detection of images in Facebook political ads with computer vision","authors":"Rasmus Schmøkel, Michael Bossetta","doi":"10.1080/19331681.2021.1928579","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a methodological workflow using two open science tools that we developed. The first, FBAdLibrian, collects images from the Facebook Ad Library. The second, Pykognition, simplifies facial and emotion detection in images using computer vision. We provide a methodological workflow for using these tools and apply them to a case study of the 2020 US primary elections. We find that unique images of campaigning candidates are only a fraction (<.1%) of overall ads. Furthermore, we find that candidates most often display happiness and calm in their facial expressions, and they rarely attack opponents in image-based ads from their official Facebook pages. When candidates do attack, opponents are portrayed with emotions such as anger, sadness, and fear.","PeriodicalId":47047,"journal":{"name":"Journal of Information Technology & Politics","volume":"19 1","pages":"118 - 128"},"PeriodicalIF":2.6000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19331681.2021.1928579","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology & Politics","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/19331681.2021.1928579","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT We present a methodological workflow using two open science tools that we developed. The first, FBAdLibrian, collects images from the Facebook Ad Library. The second, Pykognition, simplifies facial and emotion detection in images using computer vision. We provide a methodological workflow for using these tools and apply them to a case study of the 2020 US primary elections. We find that unique images of campaigning candidates are only a fraction (<.1%) of overall ads. Furthermore, we find that candidates most often display happiness and calm in their facial expressions, and they rarely attack opponents in image-based ads from their official Facebook pages. When candidates do attack, opponents are portrayed with emotions such as anger, sadness, and fear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FBAdLibrarian和Pykognition:利用计算机视觉对Facebook政治广告中的图像进行收集和情感检测的开放科学工具
我们提出了一个使用我们开发的两个开放科学工具的方法论工作流。第一个是FBAdLibrian,它从Facebook广告库中收集图片。第二个是Pykognition,它使用计算机视觉简化了图像中的面部和情感检测。我们提供了一个使用这些工具的方法论工作流程,并将其应用于2020年美国初选的案例研究。我们发现竞选候选人的独特图像只占整个广告的一小部分(< 0.1%)。此外,我们发现候选人最常在他们的面部表情中表现出快乐和平静,他们很少在他们的官方Facebook页面上的基于图像的广告中攻击对手。当候选人发起攻击时,对手会表现出愤怒、悲伤和恐惧等情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
7.70%
发文量
31
期刊最新文献
Partisan news recommendations. Studying the effect of politicians’ online news sharing on news credibility From tweets to tensions: exploring the roots of political polarization in Turkish constitutional referendum Self-interest and preferences for the regulation of artificial intelligence Critical social media and political engagement in authoritarian regimes: the role of state media fairness perceptions Social media and political contention - challenges and opportunities for comparative research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1