Networks of Micellar Chains with Nanoplates

IF 1.6 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series C Pub Date : 2021-11-17 DOI:10.1134/S1811238221020053
V. S. Molchanov, A. I. Kuklin, A. S. Orekhov, N. A. Arkharova, E. S. Khudoleeva, O. E. Philippova
{"title":"Networks of Micellar Chains with Nanoplates","authors":"V. S. Molchanov,&nbsp;A. I. Kuklin,&nbsp;A. S. Orekhov,&nbsp;N. A. Arkharova,&nbsp;E. S. Khudoleeva,&nbsp;O. E. Philippova","doi":"10.1134/S1811238221020053","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposite networks of surfactant micellar chains and natural bentonite clay nanoplates are studied by rheometry, small-angle neutron scattering, and cryogenic transmission electron microscopy. It is shown that, in an aqueous medium in the presence of a small part of an anionic surfactant, sodium dodecyl sulfate, the molecules of a biodegradable zwitterionic surfactant, oleyl amidopropyl dimethyl carboxybetaine, form micron-length living micellar chains which entangle and form a network possessing well-defined viscoelastic properties. It is found that addition of negatively charged clay nanoplates leads to an increase in viscosity and relaxation time by an order of magnitude. This is explained by the incorporation of the nanoplates into the network as physical multifunctional crosslinks. The incorporation occurs via the attachment of semispherical end-caps of the micelles to the surface of the particles covered with a surfactant layer, as visualized by cryogenic transmission electron microscopy. As the amount of nanoplates is increased, the rheological properties reach plateau; this is associated with the attachment of all end parts of micelles to nanoplates. The developed nanocomposite soft networks based on safe and eco-friendly components are promising for various practical applications.</p>","PeriodicalId":740,"journal":{"name":"Polymer Science, Series C","volume":"63 2","pages":"170 - 180"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1811238221020053.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series C","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1811238221020053","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Nanocomposite networks of surfactant micellar chains and natural bentonite clay nanoplates are studied by rheometry, small-angle neutron scattering, and cryogenic transmission electron microscopy. It is shown that, in an aqueous medium in the presence of a small part of an anionic surfactant, sodium dodecyl sulfate, the molecules of a biodegradable zwitterionic surfactant, oleyl amidopropyl dimethyl carboxybetaine, form micron-length living micellar chains which entangle and form a network possessing well-defined viscoelastic properties. It is found that addition of negatively charged clay nanoplates leads to an increase in viscosity and relaxation time by an order of magnitude. This is explained by the incorporation of the nanoplates into the network as physical multifunctional crosslinks. The incorporation occurs via the attachment of semispherical end-caps of the micelles to the surface of the particles covered with a surfactant layer, as visualized by cryogenic transmission electron microscopy. As the amount of nanoplates is increased, the rheological properties reach plateau; this is associated with the attachment of all end parts of micelles to nanoplates. The developed nanocomposite soft networks based on safe and eco-friendly components are promising for various practical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米片胶束链网络
采用流变学、小角中子散射和低温透射电镜研究了表面活性剂胶束链和天然膨润土纳米板的纳米复合网络。结果表明,在含有少量阴离子表面活性剂十二烷基硫酸钠的水介质中,可生物降解的两性表面活性剂油酰酰胺丙基二甲基羧甜菜碱分子形成微米长度的活胶束链,这些胶束链相互缠绕并形成具有明确粘弹性的网络。研究发现,负电荷粘土纳米板的加入使黏度和弛豫时间增加了一个数量级。这可以通过将纳米片作为物理多功能交联结合到网络中来解释。通过低温透射电子显微镜观察到,胶束的半球形端帽附着在表面活性剂层覆盖的颗粒表面,从而发生掺入。随着纳米片用量的增加,其流变性能趋于平稳;这与胶束的所有末端都附着在纳米板上有关。基于安全环保元件的纳米复合软网络具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series C
Polymer Science, Series C 工程技术-高分子科学
CiteScore
3.00
自引率
4.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Polymer Science, Series C (Selected Topics) is a journal published in collaboration with the Russian Academy of Sciences. Series C (Selected Topics) includes experimental and theoretical papers and reviews on the selected actual topics of macromolecular science chosen by the editorial board (1 issue a year). Submission is possible by invitation only. All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
期刊最新文献
On the 100th Anniversary of Nikolai Sergeevich Enikolopov (1924–1993) Morphology and Physical-Chemical Properties of Composite Materials Based on Polyolefins and Chitosan Self-Healing Polyurethanes Based on Natural Raw Materials Features of Polymer Modification in a Supercritical Carbon Dioxide Environment Modern Technologies for Creating Powdered Cellulose and Nanocellulose Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1