{"title":"Motion planning methods for autonomous vehicles in disordered traffic systems: a comparative analysis and future research directions","authors":"C. R. Munigety","doi":"10.1504/ijvas.2020.10030411","DOIUrl":null,"url":null,"abstract":"Most works that exist in the field of autonomous vehicle motion planning are in the context of orderly or lane-oriented traffic. However, the traffic conditions that exist in many countries like India, China, Bangladesh, etc. are disordered where the vehicles move anywhere laterally without complying with the lane discipline rule. This characteristic makes the task of planning by an autonomous vehicle manoeuvring in disordered traffic streams highly complex and computationally rigorous. The motion planning problem of autonomous vehicles in traffic systems where lane-discipline is not necessarily followed bears a resemblance with the mobile-robot motion planning. Thus, this paper reviews various techniques available for motion planning of robots in conjunction with the issue of motion planning of autonomous vehicles in disordered traffic conditions, highlights the advantages and limitations of different approaches alongside simulation-based comparative analysis, and finally puts forth some research directions.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvas.2020.10030411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Most works that exist in the field of autonomous vehicle motion planning are in the context of orderly or lane-oriented traffic. However, the traffic conditions that exist in many countries like India, China, Bangladesh, etc. are disordered where the vehicles move anywhere laterally without complying with the lane discipline rule. This characteristic makes the task of planning by an autonomous vehicle manoeuvring in disordered traffic streams highly complex and computationally rigorous. The motion planning problem of autonomous vehicles in traffic systems where lane-discipline is not necessarily followed bears a resemblance with the mobile-robot motion planning. Thus, this paper reviews various techniques available for motion planning of robots in conjunction with the issue of motion planning of autonomous vehicles in disordered traffic conditions, highlights the advantages and limitations of different approaches alongside simulation-based comparative analysis, and finally puts forth some research directions.