Color guided convolutional network for point cloud semantic segmentation

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2022-05-01 DOI:10.1177/17298806221098506
Jing Yang, Haozhe Li, Zhou Jiang, Dong Zhang, Xiaoli Yue, S. Du
{"title":"Color guided convolutional network for point cloud semantic segmentation","authors":"Jing Yang, Haozhe Li, Zhou Jiang, Dong Zhang, Xiaoli Yue, S. Du","doi":"10.1177/17298806221098506","DOIUrl":null,"url":null,"abstract":"Point cloud semantic segmentation based on deep learning methods is still a challenge due to the irregularity of structures and uncertainty of sampling. Color information often contains a lot of prior information, whereas the existing methods do not attach more importance to it. To deal with this problem, we propose a novel hard attention mechanism, named color-guided convolution. This convolution operator learns the correlation between geometric and color information by reordering the local points with color-indicated vectors. In addition, the global feature fusion is proposed to rectify features selected by the feature selecting unit. Experimental results and comparisons with recent methods demonstrate the superiority of our approach.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221098506","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud semantic segmentation based on deep learning methods is still a challenge due to the irregularity of structures and uncertainty of sampling. Color information often contains a lot of prior information, whereas the existing methods do not attach more importance to it. To deal with this problem, we propose a novel hard attention mechanism, named color-guided convolution. This convolution operator learns the correlation between geometric and color information by reordering the local points with color-indicated vectors. In addition, the global feature fusion is proposed to rectify features selected by the feature selecting unit. Experimental results and comparisons with recent methods demonstrate the superiority of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颜色引导卷积网络在点云语义分割中的应用
由于结构的不规则性和采样的不确定性,基于深度学习方法的点云语义分割仍然是一个挑战。颜色信息通常包含大量的先验信息,而现有的方法并不重视它。为了解决这个问题,我们提出了一种新的硬注意机制,称为颜色引导卷积。该卷积算子通过用颜色指示向量重新排序局部点来学习几何信息和颜色信息之间的相关性。此外,提出了全局特征融合来校正由特征选择单元选择的特征。实验结果以及与最近方法的比较表明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1