ESTIMATION OF MECHANICAL LOAD ON RUBBER MIXING ROTORS BY USING A PARTIALLY FILLED FLOW SIMULATION IN CHAMBER

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE Rubber Chemistry and Technology Pub Date : 2021-09-03 DOI:10.5254/rct.21.79951
K. Fukutani, Kousuke Higashi, Hodaka Miura, Yasuaki Yamane
{"title":"ESTIMATION OF MECHANICAL LOAD ON RUBBER MIXING ROTORS BY USING A PARTIALLY FILLED FLOW SIMULATION IN CHAMBER","authors":"K. Fukutani, Kousuke Higashi, Hodaka Miura, Yasuaki Yamane","doi":"10.5254/rct.21.79951","DOIUrl":null,"url":null,"abstract":"\n Mixing characteristics and mechanical loads of rubber-mixing rotors are considered to be the two most important factors in actual rotor design. For the design of highly reliable production mixers, there is a great need for a proper estimation method of mechanical load, such as radial force or rotation torque of the rotors. The mechanical load of tangential mixing rotors and surrounding flow are mainly discussed by using partially filled numerical flow simulation. Operational parameters of the mixing condition were set to be fill factor and rotor phase angle of two rotors rotating at an even speed. The Carreau model was applied to the shear rate dependence of viscosity. The volume-of-fluid method was used for free surface simulation. Both two-dimensional and three-dimensional simulations were carried out to discuss mechanical load and its fluctuation mechanisms. For the numerical results, radial force on rotors, pressure, and the velocity distribution around the rotors and their fluctuations are presented and discussed. It was found that the radial force of the rotors could be estimated using this kind of flow simulation, and the fluctuation phenomena could be explained by the movement of a high-pressure region between the front of the rotor wings and the chamber wall.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79951","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mixing characteristics and mechanical loads of rubber-mixing rotors are considered to be the two most important factors in actual rotor design. For the design of highly reliable production mixers, there is a great need for a proper estimation method of mechanical load, such as radial force or rotation torque of the rotors. The mechanical load of tangential mixing rotors and surrounding flow are mainly discussed by using partially filled numerical flow simulation. Operational parameters of the mixing condition were set to be fill factor and rotor phase angle of two rotors rotating at an even speed. The Carreau model was applied to the shear rate dependence of viscosity. The volume-of-fluid method was used for free surface simulation. Both two-dimensional and three-dimensional simulations were carried out to discuss mechanical load and its fluctuation mechanisms. For the numerical results, radial force on rotors, pressure, and the velocity distribution around the rotors and their fluctuations are presented and discussed. It was found that the radial force of the rotors could be estimated using this kind of flow simulation, and the fluctuation phenomena could be explained by the movement of a high-pressure region between the front of the rotor wings and the chamber wall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用室内部分填充流模拟计算混炼胶转子的机械负荷
混炼转子的混炼特性和机械载荷是实际混炼转子设计中最重要的两个因素。为了设计高可靠性的生产混合器,非常需要一种适当的机械负荷估算方法,如转子的径向力或旋转扭矩。采用部分充填料流数值模拟的方法,重点讨论了切向混合转子的机械载荷和周围流动。将混合条件的运行参数设置为填充系数和两转子匀速旋转时的转子相位角。用carcarau模型分析了黏度与剪切速率的关系。自由表面模拟采用流体体积法。进行了二维和三维仿真,讨论了机械载荷及其波动机理。对于数值结果,给出并讨论了转子上的径向力、压力和转子周围的速度分布及其波动。结果表明,利用这种流动模拟可以估计出转子的径向力,并且波动现象可以用转子翼前与腔室壁面之间的高压区域的运动来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
期刊最新文献
EXPANDING HORIZONS: DIVERSE APPLICATIONS OF RUBBERS AND ELASTOMERS IN EMERGING TECHNOLOGIES EFFECT OF DEEP EUTECTIC SOLVENT PRETREATMENT ON DEVULCANIZATION OF WASTE RUBBER POWDER A NOVEL SBS COMPOUND VIA BLENDING WITH PS-B-PMBL DIBLOCK COPOLYMER FOR ENHANCED MECHANICAL PROPERTIES INFLUENCE OF POLAR MODIFIERS ON THE ANIONIC SOLUTION 1,3-BUTADIENE POLYMERIZATIONS INFLUENCE OF THE MIXTURE VISCOSITY ON MECHANICAL ANISOTROPY AND PROCESSABILITY OF AN NBR-BASED RUBBER MIXTURE FOR ADDITIVE MANUFACTURING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1