Chenlong Li, Changshun Yuan, Xiaoshu Ma, Wen-Liang Chen, Jun Wang
{"title":"Integrated fault detection for industrial process monitoring based on multi-dimensional Taylor network","authors":"Chenlong Li, Changshun Yuan, Xiaoshu Ma, Wen-Liang Chen, Jun Wang","doi":"10.1108/aa-06-2021-0076","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to provide a novel integrated fault detection method for industrial process monitoring.\n\n\nDesign/methodology/approach\nA novel integrated fault detection method based on the combination of Mallat (MA) algorithm, weight-elimination (WE) algorithm, conjugate gradient (CG) algorithm and multi-dimensional Taylor network (MTN) dynamic model, namely, MA-WE-CG-MTN, is proposed in this paper. First, MA algorithm is taken as data pre-processing. Second, in virtue of approximation ability and low computation complexity owing to the simple structure of MTN, MTN dynamic models are constructed for each frequency band. Furthermore, the CG algorithm is used to discipline the model parameters and the outputs of MTN model of each frequency band are gained. Third, the authors introduce the WE algorithm to cut down the number of middle layer nodes of MTN, reducing the complexity of the network. Finally, the outputs of MTN model for each frequency band are superimposed to achieve outputs of MTN model, and fault detection is proceeded by the residual error generator based on the difference between the output of MTN model and the actual output.\n\n\nFindings\nThe novel proposed method is used to perform fault detection for industrial process monitoring effectively, such as the Benchmark Simulation Model 1 wastewater treatment process.\n\n\nOriginality/value\nThe novel proposed method has generality and provides considerably improved performance and effectiveness, which is used to perform fault detection for industrial process monitoring. The proposed method has good robustness, low complexity and easy implementation.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-06-2021-0076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
This paper aims to provide a novel integrated fault detection method for industrial process monitoring.
Design/methodology/approach
A novel integrated fault detection method based on the combination of Mallat (MA) algorithm, weight-elimination (WE) algorithm, conjugate gradient (CG) algorithm and multi-dimensional Taylor network (MTN) dynamic model, namely, MA-WE-CG-MTN, is proposed in this paper. First, MA algorithm is taken as data pre-processing. Second, in virtue of approximation ability and low computation complexity owing to the simple structure of MTN, MTN dynamic models are constructed for each frequency band. Furthermore, the CG algorithm is used to discipline the model parameters and the outputs of MTN model of each frequency band are gained. Third, the authors introduce the WE algorithm to cut down the number of middle layer nodes of MTN, reducing the complexity of the network. Finally, the outputs of MTN model for each frequency band are superimposed to achieve outputs of MTN model, and fault detection is proceeded by the residual error generator based on the difference between the output of MTN model and the actual output.
Findings
The novel proposed method is used to perform fault detection for industrial process monitoring effectively, such as the Benchmark Simulation Model 1 wastewater treatment process.
Originality/value
The novel proposed method has generality and provides considerably improved performance and effectiveness, which is used to perform fault detection for industrial process monitoring. The proposed method has good robustness, low complexity and easy implementation.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.