Carrier synchronisation in multiband carrierless amplitude and phase modulation for visible light communication-based IoT systems

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Optoelectronics Pub Date : 2023-06-02 DOI:10.1049/ote2.12095
Luís Rodrigues, Mónica Figueiredo, Luís Nero Alves, Zabih Ghassemlooy
{"title":"Carrier synchronisation in multiband carrierless amplitude and phase modulation for visible light communication-based IoT systems","authors":"Luís Rodrigues,&nbsp;Mónica Figueiredo,&nbsp;Luís Nero Alves,&nbsp;Zabih Ghassemlooy","doi":"10.1049/ote2.12095","DOIUrl":null,"url":null,"abstract":"<p>The technical feasibility of developing an Internet of Things multi-user communication system is evaluated based on a central digital multiband carrierless amplitude and phase transmitter, which broadcasts data on multiple channels for a number of low-cost/low-power devices. It addresses the issue of carrier synchronisation, which is critical in real-world implementations because of imperfections of devices and the delays of the system. A simulation model for the traditional Costas Loop is presented, along with performance results, which demonstrate the system's ability to synchronise with pull-in and lock ranges of ±800 and ±900 Hz, respectively. The loop requires 1.194 ms to be in the locked state, allowing the system to lock within 6 symbols period. In addition, the authors measured the performance of the system in the presence of noise and interference from other modulated bands. The results showed that noise and interference did not degrade the system's performance. Although the system was unable to lock when energy was present in adjacent bands, alternative options such as a high order phase-locked loop and hybrid frequency-division multiple access and time-division multiple access, can improve system performance without significantly increasing the cost and complexity of the devices.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"17 4","pages":"120-128"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12095","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The technical feasibility of developing an Internet of Things multi-user communication system is evaluated based on a central digital multiband carrierless amplitude and phase transmitter, which broadcasts data on multiple channels for a number of low-cost/low-power devices. It addresses the issue of carrier synchronisation, which is critical in real-world implementations because of imperfections of devices and the delays of the system. A simulation model for the traditional Costas Loop is presented, along with performance results, which demonstrate the system's ability to synchronise with pull-in and lock ranges of ±800 and ±900 Hz, respectively. The loop requires 1.194 ms to be in the locked state, allowing the system to lock within 6 symbols period. In addition, the authors measured the performance of the system in the presence of noise and interference from other modulated bands. The results showed that noise and interference did not degrade the system's performance. Although the system was unable to lock when energy was present in adjacent bands, alternative options such as a high order phase-locked loop and hybrid frequency-division multiple access and time-division multiple access, can improve system performance without significantly increasing the cost and complexity of the devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可见光通信的物联网系统的多频带无载波幅度和相位调制中的载波同步
基于中央数字多频带无载波幅度和相位发射机,评估了开发物联网多用户通信系统的技术可行性,该发射机在多个信道上为许多低成本/低功率设备广播数据。它解决了载波同步问题,由于设备的缺陷和系统的延迟,载波同步在现实世界的实现中至关重要。提出了传统Costas回路的仿真模型,以及性能结果,证明了系统与牵引和锁定范围同步的能力� 800和� 900Hz。环路需要1.194ms才能处于锁定状态,允许系统在6个符号周期内锁定。此外,作者还测量了系统在存在其他调制频带的噪声和干扰的情况下的性能。结果表明,噪声和干扰并没有降低系统的性能。尽管当能量存在于相邻频带时,系统无法锁定,但高阶锁相环、混合频分多址和时分多址等替代方案可以在不显著增加设备成本和复杂性的情况下提高系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Optoelectronics
Iet Optoelectronics 工程技术-电信学
CiteScore
4.50
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays. Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues. IET Optoelectronics covers but is not limited to the following topics: Optical and optoelectronic materials Light sources, including LEDs, lasers and devices for lighting Optical modulation and multiplexing Optical fibres, cables and connectors Optical amplifiers Photodetectors and optical receivers Photonic integrated circuits Nanophotonics and photonic crystals Optical signal processing Holography Displays
期刊最新文献
Cover Image ANFIS-based controlled spherical rotator with quadrant photodiode to improve position detection accuracy An unsupervised coherent receiver digital signal processing algorithm based on spectral clustering with no data preamble Continuous wave operation of broad area and ridge waveguide laser diodes at 626 nm Experimental analysis of reducing outage probability using deep interleaving for long-distance free space optical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1