Adaptive multiscale predictive modelling

IF 16.3 1区 数学 Q1 MATHEMATICS Acta Numerica Pub Date : 2018-05-01 DOI:10.1017/S096249291800003X
J. Oden
{"title":"Adaptive multiscale predictive modelling","authors":"J. Oden","doi":"10.1017/S096249291800003X","DOIUrl":null,"url":null,"abstract":"The use of computational models and simulations to predict events that take place in our physical universe, or to predict the behaviour of engineered systems, has significantly advanced the pace of scientific discovery and the creation of new technologies for the benefit of humankind over recent decades, at least up to a point. That ‘point’ in recent history occurred around the time that the scientific community began to realize that true predictive science must deal with many formidable obstacles, including the determination of the reliability of the models in the presence of many uncertainties. To develop meaningful predictions one needs relevant data, itself possessing uncertainty due to experimental noise; in addition, one must determine model parameters, and concomitantly, there is the overriding need to select and validate models given the data and the goals of the simulation. This article provides a broad overview of predictive computational science within the framework of what is often called the science of uncertainty quantification. The exposition is divided into three major parts. In Part 1, philosophical and statistical foundations of predictive science are developed within a Bayesian framework. There the case is made that the Bayesian framework provides, perhaps, a unique setting for handling all of the uncertainties encountered in scientific prediction. In Part 2, general frameworks and procedures for the calculation and validation of mathematical models of physical realities are given, all in a Bayesian setting. But beyond Bayes, an introduction to information theory, the maximum entropy principle, model sensitivity analysis and sampling methods such as MCMC are presented. In Part 3, the central problem of predictive computational science is addressed: the selection, adaptive control and validation of mathematical and computational models of complex systems. The Occam Plausibility Algorithm, OPAL, is introduced as a framework for model selection, calibration and validation. Applications to complex models of tumour growth are discussed.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"27 1","pages":"353 - 450"},"PeriodicalIF":16.3000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S096249291800003X","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S096249291800003X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 50

Abstract

The use of computational models and simulations to predict events that take place in our physical universe, or to predict the behaviour of engineered systems, has significantly advanced the pace of scientific discovery and the creation of new technologies for the benefit of humankind over recent decades, at least up to a point. That ‘point’ in recent history occurred around the time that the scientific community began to realize that true predictive science must deal with many formidable obstacles, including the determination of the reliability of the models in the presence of many uncertainties. To develop meaningful predictions one needs relevant data, itself possessing uncertainty due to experimental noise; in addition, one must determine model parameters, and concomitantly, there is the overriding need to select and validate models given the data and the goals of the simulation. This article provides a broad overview of predictive computational science within the framework of what is often called the science of uncertainty quantification. The exposition is divided into three major parts. In Part 1, philosophical and statistical foundations of predictive science are developed within a Bayesian framework. There the case is made that the Bayesian framework provides, perhaps, a unique setting for handling all of the uncertainties encountered in scientific prediction. In Part 2, general frameworks and procedures for the calculation and validation of mathematical models of physical realities are given, all in a Bayesian setting. But beyond Bayes, an introduction to information theory, the maximum entropy principle, model sensitivity analysis and sampling methods such as MCMC are presented. In Part 3, the central problem of predictive computational science is addressed: the selection, adaptive control and validation of mathematical and computational models of complex systems. The Occam Plausibility Algorithm, OPAL, is introduced as a framework for model selection, calibration and validation. Applications to complex models of tumour growth are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应多尺度预测模型
使用计算模型和模拟来预测我们的物理宇宙中发生的事件,或预测工程系统的行为,在最近几十年里,至少在一定程度上大大加快了科学发现的步伐,并创造了造福人类的新技术。近代史上的那个“点”大约发生在科学界开始认识到真正的预测科学必须处理许多可怕的障碍的时候,包括在存在许多不确定性的情况下确定模型的可靠性。为了进行有意义的预测,需要相关的数据,数据本身由于实验噪声而具有不确定性;此外,必须确定模型参数,同时,在给定数据和仿真目标的情况下,选择和验证模型是最重要的需求。本文在通常被称为不确定性量化科学的框架内提供了预测计算科学的广泛概述。全文分为三个主要部分。在第1部分,预测科学的哲学和统计基础是在贝叶斯框架内发展起来的。书中提出,贝叶斯框架或许为处理科学预测中遇到的所有不确定性提供了一种独特的设置。在第2部分中,给出了物理现实数学模型的计算和验证的一般框架和程序,所有这些都在贝叶斯设置中。除了贝叶斯之外,还介绍了信息论、最大熵原理、模型灵敏度分析和MCMC等抽样方法。在第3部分,预测计算科学的中心问题是解决:选择,自适应控制和复杂系统的数学和计算模型的验证。介绍了Occam似然算法(OPAL)作为模型选择、标定和验证的框架。讨论了复杂肿瘤生长模型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
期刊最新文献
Splitting methods for differential equations Adaptive finite element methods The geometry of monotone operator splitting methods Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning Optimal experimental design: Formulations and computations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1