An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis

Pub Date : 2023-07-20 DOI:10.24425/ather.2021.138112
Harish Kumar Ghritlahre
{"title":"An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis","authors":"Harish Kumar Ghritlahre","doi":"10.24425/ather.2021.138112","DOIUrl":null,"url":null,"abstract":"In the present study, energy and exergy analysis has been evaluated for roughened solar air heater (SAH) using arc shaped wire ribs. To achieve this aim, two different types of flow arrangement have been considered. These arrangements are: apex upstream flow and apex downstream flo. In addition to this, a smooth duct SAH has been used for comparative study. The experiments were performed using the mass flow rate of 0.007– 0.022 kg/s on outdoor condition at Jamshedpur city of India. The absorber plate roughness geometry has been designed with relative roughness height 0.0395, rib size 2.5 mm, relative roughness pitch 10 and arc angle 60 ◦ . The energetic and exergetic performances have been examined on the basis of the first and second law of thermodynamics. According to the results, there is observed to be the maximum thermal efficiency and exergy efficiency as 73.2% and 2.64%, respectively, for apex upstream flow SAH at 0.022 kg/s, while, at same mass flow rate the maximum thermal efficiency and exergy ef-ficiency is obtained as 69.4% and 1.89%, respectively, for apex downstream flow SAH. In addition to this, results reported that the maximum outlet temperature and temperature difference observed at lower mass flow rate. Also examined the outlet air temperature of SAH with various mass flow rates is very important for both analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2021.138112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present study, energy and exergy analysis has been evaluated for roughened solar air heater (SAH) using arc shaped wire ribs. To achieve this aim, two different types of flow arrangement have been considered. These arrangements are: apex upstream flow and apex downstream flo. In addition to this, a smooth duct SAH has been used for comparative study. The experiments were performed using the mass flow rate of 0.007– 0.022 kg/s on outdoor condition at Jamshedpur city of India. The absorber plate roughness geometry has been designed with relative roughness height 0.0395, rib size 2.5 mm, relative roughness pitch 10 and arc angle 60 ◦ . The energetic and exergetic performances have been examined on the basis of the first and second law of thermodynamics. According to the results, there is observed to be the maximum thermal efficiency and exergy efficiency as 73.2% and 2.64%, respectively, for apex upstream flow SAH at 0.022 kg/s, while, at same mass flow rate the maximum thermal efficiency and exergy ef-ficiency is obtained as 69.4% and 1.89%, respectively, for apex downstream flow SAH. In addition to this, results reported that the maximum outlet temperature and temperature difference observed at lower mass flow rate. Also examined the outlet air temperature of SAH with various mass flow rates is very important for both analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于能量和火用分析的弧形丝肋粗糙度太阳能空气加热器实验研究
在本研究中,对采用弧形线肋的粗糙化太阳能空气加热器(SAH)进行了能量和火用分析。为了实现这一目标,考虑了两种不同类型的流动安排。这些安排是:顶点上游流和顶点下游流。除此之外,还使用了光滑管道SAH进行比较研究。实验是在印度Jamshedpur市的室外条件下,使用0.007–0.022 kg/s的质量流量进行的。吸收器板的粗糙度几何结构设计为相对粗糙度高度0.0395,肋尺寸2.5mm,相对粗糙度节距10和弧角60◦ . 根据热力学第一定律和第二定律对能量和运动性能进行了检验。根据结果,在0.022kg/s时,上游最高流量SAH的最大热效率和(火用)效率分别为73.2%和2.64%,而在相同的质量流量下,下游最高流量SAH的最高热效率和火用效率分别为69.4%和1.89%。除此之外,研究结果表明,在较低的质量流量下观察到的最大出口温度和温度差异。还检查了不同质量流量下SAH的出口空气温度,这对两种分析都非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1