Efficient Distributed Matrix-free Multigrid Methods on Locally Refined Meshes for FEM Computations

Pub Date : 2022-03-23 DOI:10.1145/3580314
Peter Munch, T. Heister, Laura Prieto Saavedra, M. Kronbichler
{"title":"Efficient Distributed Matrix-free Multigrid Methods on Locally Refined Meshes for FEM Computations","authors":"Peter Munch, T. Heister, Laura Prieto Saavedra, M. Kronbichler","doi":"10.1145/3580314","DOIUrl":null,"url":null,"abstract":"This work studies three multigrid variants for matrix-free finite-element computations on locally refined meshes: geometric local smoothing, geometric global coarsening (both h-multigrid), and polynomial global coarsening (a variant of p-multigrid). We have integrated the algorithms into the same framework—the open source finite-element library deal.II—, which allows us to make fair comparisons regarding their implementation complexity, computational efficiency, and parallel scalability as well as to compare the measurements with theoretically derived performance metrics. Serial simulations and parallel weak and strong scaling on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node constraints might be significant, leading to advantages of local smoothing, even though the number of solver iterations needed is slightly higher. When using p- and h-multigrid in sequence (hp-multigrid), the results indicate that it makes sense to decrease the degree of the elements first from a performance point of view due to the cheaper transfer.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work studies three multigrid variants for matrix-free finite-element computations on locally refined meshes: geometric local smoothing, geometric global coarsening (both h-multigrid), and polynomial global coarsening (a variant of p-multigrid). We have integrated the algorithms into the same framework—the open source finite-element library deal.II—, which allows us to make fair comparisons regarding their implementation complexity, computational efficiency, and parallel scalability as well as to compare the measurements with theoretically derived performance metrics. Serial simulations and parallel weak and strong scaling on up to 147,456 CPU cores on 3,072 compute nodes are presented. The results obtained indicate that global-coarsening algorithms show a better parallel behavior for comparable smoothers due to the better load balance, particularly on the expensive fine levels. In the serial case, the costs of applying hanging-node constraints might be significant, leading to advantages of local smoothing, even though the number of solver iterations needed is slightly higher. When using p- and h-multigrid in sequence (hp-multigrid), the results indicate that it makes sense to decrease the degree of the elements first from a performance point of view due to the cheaper transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
用于有限元计算的局部精细网格上的高效分布式无矩阵多重网格方法
这项工作研究了在局部精细网格上进行无矩阵有限元计算的三种多网格变体:几何局部平滑、几何全局粗化(都是h-multigrid)和多项式全局粗化(p-multigrid的一种变体)。我们已经将算法集成到同一个框架中——开源的有限元库协议。II -,它允许我们对它们的实现复杂性、计算效率和并行可伸缩性进行公平的比较,并将测量结果与理论推导的性能指标进行比较。给出了在3072个计算节点上多达147456个CPU核上的串行仿真和并行弱、强扩展。结果表明,全局粗化算法由于更好的负载平衡,特别是在昂贵的精细级别上,对可比平滑器表现出更好的并行行为。在串行情况下,应用悬挂节点约束的成本可能很大,从而带来局部平滑的优势,尽管所需的求解器迭代次数略高。当依次使用p-和h-多重网格(hp-多重网格)时,结果表明,从性能的角度来看,由于传输成本较低,首先降低元素的程度是有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1