Е. Matus, S. Yashnik, A. Salnikov, L. M. Khitsova, A. Popova, A. Nikitin, S. Sozinov, Z. Ismagilov
{"title":"Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel","authors":"Е. Matus, S. Yashnik, A. Salnikov, L. M. Khitsova, A. Popova, A. Nikitin, S. Sozinov, Z. Ismagilov","doi":"10.18321/ectj1130","DOIUrl":null,"url":null,"abstract":"Aerobic oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts (M = Ce, Cu, Mo) was studied to develop innovative technology for cleaning motor fuels to EURO-5 standard. It was shown that the thermal stability of catalysts improves in the following order of metal Сu < Сe < Мо. The disordering of the carbon matrix of support increases in the next row of M: Mo < Ce < Cu, which is accompanied by an increase in the specific surface area of the samples (40 → 105 m2/g). The forms of stabilization of the active component (CeO2, CuO/Cu2O/ Cu, or MoO3/MoO2) were revealed, indicating a partial reduction of the metal cations during the thermal decomposition of copper and molybdenum precursor compounds deposited on CNTs. In oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts at 150 °C the total conversion of dibenzothiophene increased in the next row of M: Се < Сu < Мо. It was found that at 150 °C over the optimum MoOx/CNTs catalyst the highest dibenzothiophene conversion 95–99% is observed. It was assumed that the high activity of MoOx/CNTs is associated with both the oxidizing ability and the tendency of MoOx to chemosorption of sulfur compounds.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aerobic oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts (M = Ce, Cu, Mo) was studied to develop innovative technology for cleaning motor fuels to EURO-5 standard. It was shown that the thermal stability of catalysts improves in the following order of metal Сu < Сe < Мо. The disordering of the carbon matrix of support increases in the next row of M: Mo < Ce < Cu, which is accompanied by an increase in the specific surface area of the samples (40 → 105 m2/g). The forms of stabilization of the active component (CeO2, CuO/Cu2O/ Cu, or MoO3/MoO2) were revealed, indicating a partial reduction of the metal cations during the thermal decomposition of copper and molybdenum precursor compounds deposited on CNTs. In oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts at 150 °C the total conversion of dibenzothiophene increased in the next row of M: Се < Сu < Мо. It was found that at 150 °C over the optimum MoOx/CNTs catalyst the highest dibenzothiophene conversion 95–99% is observed. It was assumed that the high activity of MoOx/CNTs is associated with both the oxidizing ability and the tendency of MoOx to chemosorption of sulfur compounds.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.