Mabano Amani, D. von Schiller, Isabel Suárez, Miren Atristain, A. Elosegi, R. Marcé, G. García-Baquero, B. Obrador
{"title":"The drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions from a temperate reservoir","authors":"Mabano Amani, D. von Schiller, Isabel Suárez, Miren Atristain, A. Elosegi, R. Marcé, G. García-Baquero, B. Obrador","doi":"10.1080/20442041.2022.2096977","DOIUrl":null,"url":null,"abstract":"ABSTRACT Dam decommissioning (DD) is a viable management option for thousands of ageing dams. Reservoirs are large carbon sinks, and reservoir drawdown results in important carbon dioxide (CO2) and methane (CH4) emissions. We studied the effects of DD on CO2 and CH4 fluxes from impounded water, exposed sediment, and lotic water before, during, and 3–10 months after drawdown of the Enobieta Reservoir, north Iberian Peninsula. During the study period, impounded water covered 0–100%, exposed sediment 0–96%, and lotic water 0–4% of the total reservoir area (0.14 km2). Areal CO2 fluxes in exposed sediment (mean [SE]: 295.65 [74.90] mmol m−2 d−1) and lotic water (188.11 [86.09] mmol m−2 d−1) decreased over time but remained higher than in impounded water (−36.65 [83.40] mmol m−2 d−1). Areal CH4 fluxes did not change over time and were noteworthy only in impounded water (1.82 [1.11] mmol m−2 d−1). Total ecosystem carbon (CO2 + CH4) fluxes (kg CO2-eq d−1) were higher during and after than before reservoir drawdown because of higher CO2 fluxes from exposed sediment. The reservoir was a net sink of carbon before reservoir drawdown and became an important emitter of carbon during the first 10 months after reservoir drawdown. Future studies should examine mid- and long-term effects of DD on carbon fluxes, identify the drivers of areal CO2 fluxes from exposed sediment, and incorporate DD in the carbon footprint of reservoirs.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"451 - 462"},"PeriodicalIF":2.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2022.2096977","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Dam decommissioning (DD) is a viable management option for thousands of ageing dams. Reservoirs are large carbon sinks, and reservoir drawdown results in important carbon dioxide (CO2) and methane (CH4) emissions. We studied the effects of DD on CO2 and CH4 fluxes from impounded water, exposed sediment, and lotic water before, during, and 3–10 months after drawdown of the Enobieta Reservoir, north Iberian Peninsula. During the study period, impounded water covered 0–100%, exposed sediment 0–96%, and lotic water 0–4% of the total reservoir area (0.14 km2). Areal CO2 fluxes in exposed sediment (mean [SE]: 295.65 [74.90] mmol m−2 d−1) and lotic water (188.11 [86.09] mmol m−2 d−1) decreased over time but remained higher than in impounded water (−36.65 [83.40] mmol m−2 d−1). Areal CH4 fluxes did not change over time and were noteworthy only in impounded water (1.82 [1.11] mmol m−2 d−1). Total ecosystem carbon (CO2 + CH4) fluxes (kg CO2-eq d−1) were higher during and after than before reservoir drawdown because of higher CO2 fluxes from exposed sediment. The reservoir was a net sink of carbon before reservoir drawdown and became an important emitter of carbon during the first 10 months after reservoir drawdown. Future studies should examine mid- and long-term effects of DD on carbon fluxes, identify the drivers of areal CO2 fluxes from exposed sediment, and incorporate DD in the carbon footprint of reservoirs.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.