ENDORSE Concept

Panagiotis Vartholomaios, N. Ramdani, C. Christophorou, Dimosthenis Georgiadis, Thomas Guilcher, Myriam Blouin, Mohamed Rebiai, A. Panayides, C. Pattichis, Michail Sarafidis, Vassilia Costarides, E. Vellidou, D. Koutsouris
{"title":"ENDORSE Concept","authors":"Panagiotis Vartholomaios, N. Ramdani, C. Christophorou, Dimosthenis Georgiadis, Thomas Guilcher, Myriam Blouin, Mohamed Rebiai, A. Panayides, C. Pattichis, Michail Sarafidis, Vassilia Costarides, E. Vellidou, D. Koutsouris","doi":"10.4018/IJRQEH.2019070104","DOIUrl":null,"url":null,"abstract":"Hospitals are considered a field of logistic robotics of high commercial potential and therefore a handful of mobile robot solutions exist. However, they have failed to trigger widespread acceptance by the market. The ENDORSE system will pursue 4 innovation pillars: an infrastructure-less multi-robot navigation, i.e. minimum installation of sensors and communications buses inside the building for the localization of robots, targets and docking stations; advanced HRI for resolving deadlocks and achieving efficient sharing of space resources in crowded environments; the deployment of ENDORSE software as a cloud-based service facilitating its integration with corporate software solutions such as ERP and CRM, complying with GDPR data security requirements; and allowing for reconfigurable and modular hardware architectures so that diverse modules can be easily swapped. ENDORSE functionality will be demonstrated via the integration of an e-diagnostic support module for vital signs monitoring, facilitating connectivity to cloud-based EHR, and validated in an operational hospital environment for realistic assessment.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJRQEH.2019070104","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRQEH.2019070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 2

Abstract

Hospitals are considered a field of logistic robotics of high commercial potential and therefore a handful of mobile robot solutions exist. However, they have failed to trigger widespread acceptance by the market. The ENDORSE system will pursue 4 innovation pillars: an infrastructure-less multi-robot navigation, i.e. minimum installation of sensors and communications buses inside the building for the localization of robots, targets and docking stations; advanced HRI for resolving deadlocks and achieving efficient sharing of space resources in crowded environments; the deployment of ENDORSE software as a cloud-based service facilitating its integration with corporate software solutions such as ERP and CRM, complying with GDPR data security requirements; and allowing for reconfigurable and modular hardware architectures so that diverse modules can be easily swapped. ENDORSE functionality will be demonstrated via the integration of an e-diagnostic support module for vital signs monitoring, facilitating connectivity to cloud-based EHR, and validated in an operational hospital environment for realistic assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背书概念
医院被认为是具有高度商业潜力的物流机器人领域,因此存在少数移动机器人解决方案。然而,它们未能引起市场的广泛接受。ENDORSE系统将追求4个创新支柱:无基础设施的多机器人导航,即在建筑物内最少安装传感器和通信总线,用于机器人、目标和扩展坞的定位;用于解决僵局和在拥挤环境中实现空间资源高效共享的先进HRI;将ENDORSE软件部署为基于云的服务,促进其与企业软件解决方案(如ERP和CRM)的集成,符合GDPR数据安全要求;并且允许可重新配置和模块化的硬件架构,使得可以容易地交换不同的模块。将通过集成用于生命体征监测的电子诊断支持模块来演示ENDORSE功能,促进与基于云的EHR的连接,并在运营医院环境中进行验证,以进行现实评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
期刊最新文献
Probabilistic Model of Patient Classification Using Bayesian Model A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images The Effect of E-Learning and Traditional Teaching Done Hand-in-Hand for First-Year M.B.B.S. Students Decentralized Blockchain-Enabled Employee Authentication System Hybrid Artificial Intelligence-Based Models for Prediction of Death Rate in India Due to COVID-19 Transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1