{"title":"Thermodynamic method for analyzing and optimizing pretreatment/anaerobic digestion systems","authors":"L. Hansen","doi":"10.18331/brj2023.10.2.2","DOIUrl":null,"url":null,"abstract":"This paper builds a quantitative thermodynamic model for the microbial hydrolysis process (MHP, which uses Caldicellulosiruptor bescii at 75°C for pre-digestion) for producing biogas from a 5-10% aqueous suspension of dairy manure (naturally buffered near pH 7.8 by ammonium bicarbonate) by anaerobic digestion with a mix of acetoclastic and syntrophic methanogenesis. Standard Gibbs energy changes were calculated for the major reactions in pre-digestion, for reactions producing H2, acetate, and CO2 in the digester, and for methanogenesis reactions in the digester. The available data limit the study to analyzing reactions in the digester to reactions of short-chain volatile fatty acids anions. Results are presented as curves of ΔrxnG (Gibbs energy change) vs. acetate concentration. The H2(aq) concentration must be above 1.2×10-9 M to get significant syntrophic methanogenesis, i.e., for ΔrxnG to be negative. The results show syntrophic methanogenesis of propionate, butyrate, and valerate slows as acetate concentration increases because hydrogen production also decreases, and consequently, biogas production from syntrophic methanogenesis slows as acetate increases. Bicarbonate also inhibits both acetoclastic and syntrophic methanogenesis but is necessary to prevent acidification (souring) of the digester. At identical steady-state conditions, acetoclastic methanogenesis runs about 1.4 times faster than syntrophic methanogenesis. Because syntrophic methanogenesis produces acetate catabolized by acetoclastic methanogens, both types of methanogens are necessary to maximize biogas production. The culture in the digester is predicted to evolve to optimize the ratio of acetoclastic methanogens to syntrophic methanogens, a condition signaled by a constant, low acetate concentration in the digester effluent. Obtaining volatile solids reduction as high as 75% with MHP requires a feedstock with less than 25% lignin and a culture of acetoclastic methanogens and syntrophic methanogens and their symbiotic bacteria.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2023.10.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4
Abstract
This paper builds a quantitative thermodynamic model for the microbial hydrolysis process (MHP, which uses Caldicellulosiruptor bescii at 75°C for pre-digestion) for producing biogas from a 5-10% aqueous suspension of dairy manure (naturally buffered near pH 7.8 by ammonium bicarbonate) by anaerobic digestion with a mix of acetoclastic and syntrophic methanogenesis. Standard Gibbs energy changes were calculated for the major reactions in pre-digestion, for reactions producing H2, acetate, and CO2 in the digester, and for methanogenesis reactions in the digester. The available data limit the study to analyzing reactions in the digester to reactions of short-chain volatile fatty acids anions. Results are presented as curves of ΔrxnG (Gibbs energy change) vs. acetate concentration. The H2(aq) concentration must be above 1.2×10-9 M to get significant syntrophic methanogenesis, i.e., for ΔrxnG to be negative. The results show syntrophic methanogenesis of propionate, butyrate, and valerate slows as acetate concentration increases because hydrogen production also decreases, and consequently, biogas production from syntrophic methanogenesis slows as acetate increases. Bicarbonate also inhibits both acetoclastic and syntrophic methanogenesis but is necessary to prevent acidification (souring) of the digester. At identical steady-state conditions, acetoclastic methanogenesis runs about 1.4 times faster than syntrophic methanogenesis. Because syntrophic methanogenesis produces acetate catabolized by acetoclastic methanogens, both types of methanogens are necessary to maximize biogas production. The culture in the digester is predicted to evolve to optimize the ratio of acetoclastic methanogens to syntrophic methanogens, a condition signaled by a constant, low acetate concentration in the digester effluent. Obtaining volatile solids reduction as high as 75% with MHP requires a feedstock with less than 25% lignin and a culture of acetoclastic methanogens and syntrophic methanogens and their symbiotic bacteria.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.