{"title":"Current and future opportunities for satellite remote sensing to inform rewilding","authors":"N. Pettorelli, Henrike Schulte to Bühne","doi":"10.1002/rse2.321","DOIUrl":null,"url":null,"abstract":"Rewilding has been suggested as an effective strategy for addressing environmental challenges such as the intertwined biodiversity and climate change crises, but there is little information to guide the monitoring of rewilding projects. Since rewilding focuses on enhancing ecosystem functionality, with no defined endpoint, monitoring strategies used in restoration are often inappropriate, as they typically focus on assessing species composition, or the ecological transition of an ecosystem towards a defined desired state. We here discuss how satellite remote sensing can provide an opportunity to address existing knowledge and data gaps in rewilding science. We first discuss how satellite remote sensing is currently being used to inform rewilding initiatives and highlight current barriers to the adoption of this type of technology by practitioners and scientists involved with rewilding. We then identify opportunities for satellite remote sensing to help address current knowledge gaps in rewilding, including gaining a better understanding of the role of animals in ecosystem functioning; improving the monitoring of landscape‐scale connectivity; and assessing the impacts of rewilding on the conservation status of rewilded sites. Though significant barriers remain to the widespread use of satellite remote sensing to monitor rewilding projects, we argue that decisions on monitoring approaches and priorities need to be part of implementation plans from the start, involving both remote sensing experts and ecologists. Making use of the full potential of satellite remote sensing for rewilding ultimately requires integrating species and ecosystem perspectives at the monitoring, knowledge‐producing and decision‐making levels. Such an integration will require a change in know‐how, necessitating increased inter‐disciplinary interactions and collaborations, as well as conceptual shifts in communities and organizations traditionally involved in biodiversity conservation.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.321","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rewilding has been suggested as an effective strategy for addressing environmental challenges such as the intertwined biodiversity and climate change crises, but there is little information to guide the monitoring of rewilding projects. Since rewilding focuses on enhancing ecosystem functionality, with no defined endpoint, monitoring strategies used in restoration are often inappropriate, as they typically focus on assessing species composition, or the ecological transition of an ecosystem towards a defined desired state. We here discuss how satellite remote sensing can provide an opportunity to address existing knowledge and data gaps in rewilding science. We first discuss how satellite remote sensing is currently being used to inform rewilding initiatives and highlight current barriers to the adoption of this type of technology by practitioners and scientists involved with rewilding. We then identify opportunities for satellite remote sensing to help address current knowledge gaps in rewilding, including gaining a better understanding of the role of animals in ecosystem functioning; improving the monitoring of landscape‐scale connectivity; and assessing the impacts of rewilding on the conservation status of rewilded sites. Though significant barriers remain to the widespread use of satellite remote sensing to monitor rewilding projects, we argue that decisions on monitoring approaches and priorities need to be part of implementation plans from the start, involving both remote sensing experts and ecologists. Making use of the full potential of satellite remote sensing for rewilding ultimately requires integrating species and ecosystem perspectives at the monitoring, knowledge‐producing and decision‐making levels. Such an integration will require a change in know‐how, necessitating increased inter‐disciplinary interactions and collaborations, as well as conceptual shifts in communities and organizations traditionally involved in biodiversity conservation.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.