{"title":"N-cycling microbiome recruitment differences between modern and wild Zea mays","authors":"Alonso Favela, M. Bohn, A. Kent","doi":"10.1094/pbiomes-08-21-0049-r","DOIUrl":null,"url":null,"abstract":"Rewilding modern agricultural cultivars by reintroducing beneficial ancestral traits is a proposed approach to improve sustainability of modern agricultural systems. In this study, we compared recruitment of the rhizosphere microbiome among modern inbred maize and wild teosinte to assess whether potentially beneficial plant microbiome traits have been lost through maize domestication and modern breeding. To do this, we surveyed the bacterial and fungal communities along with nitrogen cycling functional groups in the rhizosphere of 6 modern domesticated maize genotypes and ancestral wild teosinte genotypes, while controlling for environmental conditions and starting soil inoculum. Using a combination of high-throughput sequencing and quantitative PCR, we found that the rhizosphere microbiomes of modern inbred and wild teosinte differed substantially in taxonomic composition, species richness, and abundance of N-cycling functional genes. Furthermore, the modern vs wild designation explained 27% of the variation in the prokaryotic microbiome, 62% of the variation in N-cycling gene richness, and 66% of N-cycling gene abundance. Surprisingly, we found that modern inbred genotypes hosted microbial communities with higher taxonomic and functional gene diversity within their microbiomes compared to ancestral genotypes. These results imply that modern maize and wild maize differ in their interaction with N-cycling microorganisms in the rhizosphere and that genetic variation exists within Zea to potentially ‘rewild’ microbiome-associated traits (i.e., exudation, root phenotypes, etc.).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/pbiomes-08-21-0049-r","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
Rewilding modern agricultural cultivars by reintroducing beneficial ancestral traits is a proposed approach to improve sustainability of modern agricultural systems. In this study, we compared recruitment of the rhizosphere microbiome among modern inbred maize and wild teosinte to assess whether potentially beneficial plant microbiome traits have been lost through maize domestication and modern breeding. To do this, we surveyed the bacterial and fungal communities along with nitrogen cycling functional groups in the rhizosphere of 6 modern domesticated maize genotypes and ancestral wild teosinte genotypes, while controlling for environmental conditions and starting soil inoculum. Using a combination of high-throughput sequencing and quantitative PCR, we found that the rhizosphere microbiomes of modern inbred and wild teosinte differed substantially in taxonomic composition, species richness, and abundance of N-cycling functional genes. Furthermore, the modern vs wild designation explained 27% of the variation in the prokaryotic microbiome, 62% of the variation in N-cycling gene richness, and 66% of N-cycling gene abundance. Surprisingly, we found that modern inbred genotypes hosted microbial communities with higher taxonomic and functional gene diversity within their microbiomes compared to ancestral genotypes. These results imply that modern maize and wild maize differ in their interaction with N-cycling microorganisms in the rhizosphere and that genetic variation exists within Zea to potentially ‘rewild’ microbiome-associated traits (i.e., exudation, root phenotypes, etc.).