A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models

IF 1.1 Q2 MATHEMATICS, APPLIED Computational Methods for Differential Equations Pub Date : 2020-11-01 DOI:10.22034/CMDE.2020.26116.1331
Neda Mohamadi, A. Soheili, F. Toutounian
{"title":"A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models","authors":"Neda Mohamadi, A. Soheili, F. Toutounian","doi":"10.22034/CMDE.2020.26116.1331","DOIUrl":null,"url":null,"abstract":"In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.26116.1331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于各向同性扩散和全变分模型的PDE去噪模型
本文提出了一种基于各向同性扩散和全变分模型相结合的去噪PDE模型。新的加权模型能够根据图像的信息在每个区域中是自适应的。该模型在图像的平坦区域中执行更多的扩散,而在图像的边缘中执行更少的扩散。与总变异、各向同性扩散和一些众所周知的模型相比,新模型在峰值信噪比和视觉质量方面具有更强的图像恢复能力。实验结果表明,该模型能够有效地抑制噪声,同时很好地保留纹理特征和边缘信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
期刊最新文献
Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion equation An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity A Study on Homotopy Analysis Method and Clique Polynomial Method Hybrid shrinking projection extragradient-like algorithms for equilibrium and fixed point problems A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1