{"title":"Multi-objective distributed generation integration in radial distribution system using modified neural network algorithm","authors":"Ali Tarraq, F. El Mariami, Abdelaziz Belfqih","doi":"10.11591/ijece.v13i5.pp4810-4823","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach based on a chaotic strategy and a neural network algorithm (NNA), called chaotic-based NNA (CNNA), to solve the optimal distributed generation allocation (ODGA), in the radial distribution system (RDS). This consists of determining the optimal locations and sizes of one or several distributed generations (DGs) to be inserted into the RDS to minimize one or multiple objectives while meeting a set of security limits. The robustness of the proposed method is demonstrated by applying it to two different typical RDSs, namely IEEE 33-bus and 69-bus. In this regard, simulations are performed for three DGs in the cases of unity power factor (UPF) and optimal power factor (OPF), considering single and multi-objective optimization, by minimizing the total active losses and improving the voltage profile, voltage deviation (VD) and voltage stability index (VSI). Compared to its original version and recently reported methods, the CNNA solutions are more competitive without increasing the complexity of the optimization algorithm, especially when the RDS size and problem dimension are extended.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4810-4823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new approach based on a chaotic strategy and a neural network algorithm (NNA), called chaotic-based NNA (CNNA), to solve the optimal distributed generation allocation (ODGA), in the radial distribution system (RDS). This consists of determining the optimal locations and sizes of one or several distributed generations (DGs) to be inserted into the RDS to minimize one or multiple objectives while meeting a set of security limits. The robustness of the proposed method is demonstrated by applying it to two different typical RDSs, namely IEEE 33-bus and 69-bus. In this regard, simulations are performed for three DGs in the cases of unity power factor (UPF) and optimal power factor (OPF), considering single and multi-objective optimization, by minimizing the total active losses and improving the voltage profile, voltage deviation (VD) and voltage stability index (VSI). Compared to its original version and recently reported methods, the CNNA solutions are more competitive without increasing the complexity of the optimization algorithm, especially when the RDS size and problem dimension are extended.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]