The analysis and forecasting COVID-19 cases in the United States using Bayesian structural time series models

Liming Xie
{"title":"The analysis and forecasting COVID-19 cases in the United States using Bayesian structural time series models","authors":"Liming Xie","doi":"10.1080/24709360.2021.1948380","DOIUrl":null,"url":null,"abstract":"In this paper, the Bayesian structural time series model (BSTS) is used to analyze and predict total confirmed cases who infected COVID-19 in the United States from February 28, 2020 through April 6, 2020 using the collect data from CDC (Center of Disease Control) in the United States. It includes variables of days, total confirmed cases, confirmed cases daily, death cases daily, and fatality rates. The author exploits the flexibility of Local Linear Trend, Seasonality, Contemporaneous covariates of dynamic coefficients in the Bayesian structural time series models. In addition, Causal Impact function in R programming is applied to analyze the model and read report of model. The results of the model show that the total confirmed cases who infected COVID-19 will be still most likely to increase straightly, the total numbers infected COVID-19 would be broken through 600,000 in the United States in near future (in the subsequent months). And then arrive at the peak around mid-May 2020. Also, the model suggests that the probability of variable Recovered cases daily is 0.07.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"1 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2021.1948380","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1948380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, the Bayesian structural time series model (BSTS) is used to analyze and predict total confirmed cases who infected COVID-19 in the United States from February 28, 2020 through April 6, 2020 using the collect data from CDC (Center of Disease Control) in the United States. It includes variables of days, total confirmed cases, confirmed cases daily, death cases daily, and fatality rates. The author exploits the flexibility of Local Linear Trend, Seasonality, Contemporaneous covariates of dynamic coefficients in the Bayesian structural time series models. In addition, Causal Impact function in R programming is applied to analyze the model and read report of model. The results of the model show that the total confirmed cases who infected COVID-19 will be still most likely to increase straightly, the total numbers infected COVID-19 would be broken through 600,000 in the United States in near future (in the subsequent months). And then arrive at the peak around mid-May 2020. Also, the model suggests that the probability of variable Recovered cases daily is 0.07.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯结构时间序列模型的美国新冠肺炎病例分析与预测
本文利用美国疾病控制中心(CDC)收集的数据,采用贝叶斯结构时间序列模型(BSTS)对2020年2月28日至2020年4月6日美国新冠肺炎确诊病例总数进行了分析和预测。它包括天数、总确诊病例、每日确诊病例、每日死亡病例和死亡率等变量。作者利用贝叶斯结构时间序列模型中动态系数的局部线性趋势、季节性、同期协变量的灵活性。并运用R编程中的因果影响函数对模型进行分析,读取模型报告。模型结果显示,感染COVID-19的确诊病例总数仍有可能直线上升,在不久的将来(随后的几个月),美国感染COVID-19的总人数将突破60万。然后在2020年5月中旬左右达到峰值。同时,该模型表明,每天恢复的可变病例的概率为0.07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1