Human Bone Marrow versus Adipose-Derived Stem Cells: Influence of Donor Characteristics on Expandability and Implications for Osteogenic Ex Vivo BMP-2 Regional Gene Therapy
Cory K. Mayfield, Elizabeth Lechtholz-Zey, M. Ayad, O. Sugiyama, Jay R. Lieberman
{"title":"Human Bone Marrow versus Adipose-Derived Stem Cells: Influence of Donor Characteristics on Expandability and Implications for Osteogenic Ex Vivo BMP-2 Regional Gene Therapy","authors":"Cory K. Mayfield, Elizabeth Lechtholz-Zey, M. Ayad, O. Sugiyama, Jay R. Lieberman","doi":"10.1155/2023/8061890","DOIUrl":null,"url":null,"abstract":"Novel treatment strategies for segmental bone loss in orthopaedic surgery remain under investigation. Regional gene therapy that involves transduction of mesenchymal stem cells with a lentiviral vector that expresses BMP-2 has gained particular interest as this strategy provides osteogenic and osteoinductive factors for bone growth. In particular, transduced adipose-derived stems cells (ASCs) and bone marrow-derived stem cells (BMSCs) have emerged as the leading candidates for the treatment of segmental defects in preclinical models. The aim of the present study was to evaluate the influence of demographic information on in vitro growth characteristics and bone morphogenetic protein-2 production following lentiviral transduction in a large cohort of human donors. We further sought to assess the effects of ASC harvest site on cell yield and growth characteristics. We evaluated a total of 187 human donors (124 adipose harvests and 63 bone marrow aspirates) in our cohort. We found that across all donors, ASCs demonstrated favorable growth characteristics and could be cultured in vitro more reliably than BMSCs regardless of patient-related factors. Furthermore, we noted that following lentiviral transduction, ASCs produced significantly higher levels of BMP-2 compared to BMSCs. Lastly, despite higher initial cell yields from lipoaspirate, posttransduction BMP-2 production was less than that of infrapatellar fat pad samples. These results support the continued investigation of ASCs as a cellular delivery vehicle for regional gene therapy to deliver osteoinductive proteins to specific anatomic bone repair sites.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8061890","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel treatment strategies for segmental bone loss in orthopaedic surgery remain under investigation. Regional gene therapy that involves transduction of mesenchymal stem cells with a lentiviral vector that expresses BMP-2 has gained particular interest as this strategy provides osteogenic and osteoinductive factors for bone growth. In particular, transduced adipose-derived stems cells (ASCs) and bone marrow-derived stem cells (BMSCs) have emerged as the leading candidates for the treatment of segmental defects in preclinical models. The aim of the present study was to evaluate the influence of demographic information on in vitro growth characteristics and bone morphogenetic protein-2 production following lentiviral transduction in a large cohort of human donors. We further sought to assess the effects of ASC harvest site on cell yield and growth characteristics. We evaluated a total of 187 human donors (124 adipose harvests and 63 bone marrow aspirates) in our cohort. We found that across all donors, ASCs demonstrated favorable growth characteristics and could be cultured in vitro more reliably than BMSCs regardless of patient-related factors. Furthermore, we noted that following lentiviral transduction, ASCs produced significantly higher levels of BMP-2 compared to BMSCs. Lastly, despite higher initial cell yields from lipoaspirate, posttransduction BMP-2 production was less than that of infrapatellar fat pad samples. These results support the continued investigation of ASCs as a cellular delivery vehicle for regional gene therapy to deliver osteoinductive proteins to specific anatomic bone repair sites.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.